Aromātai
\frac{a+v-av}{a\left(1-a\right)}
Kimi Pārōnaki e ai ki v
\frac{1}{a}
Tohaina
Kua tāruatia ki te papatopenga
\frac{v\left(-a+1\right)}{a\left(-a+1\right)}+\frac{a}{a\left(-a+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a me 1-a ko a\left(-a+1\right). Whakareatia \frac{v}{a} ki te \frac{-a+1}{-a+1}. Whakareatia \frac{1}{1-a} ki te \frac{a}{a}.
\frac{v\left(-a+1\right)+a}{a\left(-a+1\right)}
Tā te mea he rite te tauraro o \frac{v\left(-a+1\right)}{a\left(-a+1\right)} me \frac{a}{a\left(-a+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-va+v+a}{a\left(-a+1\right)}
Mahia ngā whakarea i roto o v\left(-a+1\right)+a.
\frac{-va+v+a}{-a^{2}+a}
Whakarohaina te a\left(-a+1\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}