Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{v\left(-a+1\right)}{a\left(-a+1\right)}+\frac{a}{a\left(-a+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a me 1-a ko a\left(-a+1\right). Whakareatia \frac{v}{a} ki te \frac{-a+1}{-a+1}. Whakareatia \frac{1}{1-a} ki te \frac{a}{a}.
\frac{v\left(-a+1\right)+a}{a\left(-a+1\right)}
Tā te mea he rite te tauraro o \frac{v\left(-a+1\right)}{a\left(-a+1\right)} me \frac{a}{a\left(-a+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-va+v+a}{a\left(-a+1\right)}
Mahia ngā whakarea i roto o v\left(-a+1\right)+a.
\frac{-va+v+a}{-a^{2}+a}
Whakarohaina te a\left(-a+1\right).