Whakaoti mō v
v=-8
v=-6
Tohaina
Kua tāruatia ki te papatopenga
\left(v+14\right)v=12\left(-4\right)
Tē taea kia ōrite te tāupe v ki -14 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12\left(v+14\right), arā, te tauraro pātahi he tino iti rawa te kitea o 12,v+14.
v^{2}+14v=12\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te v+14 ki te v.
v^{2}+14v=-48
Whakareatia te 12 ki te -4, ka -48.
v^{2}+14v+48=0
Me tāpiri te 48 ki ngā taha e rua.
v=\frac{-14±\sqrt{14^{2}-4\times 48}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 14 mō b, me 48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-14±\sqrt{196-4\times 48}}{2}
Pūrua 14.
v=\frac{-14±\sqrt{196-192}}{2}
Whakareatia -4 ki te 48.
v=\frac{-14±\sqrt{4}}{2}
Tāpiri 196 ki te -192.
v=\frac{-14±2}{2}
Tuhia te pūtakerua o te 4.
v=-\frac{12}{2}
Nā, me whakaoti te whārite v=\frac{-14±2}{2} ina he tāpiri te ±. Tāpiri -14 ki te 2.
v=-6
Whakawehe -12 ki te 2.
v=-\frac{16}{2}
Nā, me whakaoti te whārite v=\frac{-14±2}{2} ina he tango te ±. Tango 2 mai i -14.
v=-8
Whakawehe -16 ki te 2.
v=-6 v=-8
Kua oti te whārite te whakatau.
\left(v+14\right)v=12\left(-4\right)
Tē taea kia ōrite te tāupe v ki -14 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12\left(v+14\right), arā, te tauraro pātahi he tino iti rawa te kitea o 12,v+14.
v^{2}+14v=12\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te v+14 ki te v.
v^{2}+14v=-48
Whakareatia te 12 ki te -4, ka -48.
v^{2}+14v+7^{2}=-48+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}+14v+49=-48+49
Pūrua 7.
v^{2}+14v+49=1
Tāpiri -48 ki te 49.
\left(v+7\right)^{2}=1
Tauwehea v^{2}+14v+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v+7\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v+7=1 v+7=-1
Whakarūnātia.
v=-6 v=-8
Me tango 7 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}