Tīpoka ki ngā ihirangi matua
Whakaoti mō v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(v+14\right)v=12\left(-4\right)
Tē taea kia ōrite te tāupe v ki -14 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12\left(v+14\right), arā, te tauraro pātahi he tino iti rawa te kitea o 12,v+14.
v^{2}+14v=12\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te v+14 ki te v.
v^{2}+14v=-48
Whakareatia te 12 ki te -4, ka -48.
v^{2}+14v+48=0
Me tāpiri te 48 ki ngā taha e rua.
v=\frac{-14±\sqrt{14^{2}-4\times 48}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 14 mō b, me 48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-14±\sqrt{196-4\times 48}}{2}
Pūrua 14.
v=\frac{-14±\sqrt{196-192}}{2}
Whakareatia -4 ki te 48.
v=\frac{-14±\sqrt{4}}{2}
Tāpiri 196 ki te -192.
v=\frac{-14±2}{2}
Tuhia te pūtakerua o te 4.
v=-\frac{12}{2}
Nā, me whakaoti te whārite v=\frac{-14±2}{2} ina he tāpiri te ±. Tāpiri -14 ki te 2.
v=-6
Whakawehe -12 ki te 2.
v=-\frac{16}{2}
Nā, me whakaoti te whārite v=\frac{-14±2}{2} ina he tango te ±. Tango 2 mai i -14.
v=-8
Whakawehe -16 ki te 2.
v=-6 v=-8
Kua oti te whārite te whakatau.
\left(v+14\right)v=12\left(-4\right)
Tē taea kia ōrite te tāupe v ki -14 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12\left(v+14\right), arā, te tauraro pātahi he tino iti rawa te kitea o 12,v+14.
v^{2}+14v=12\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te v+14 ki te v.
v^{2}+14v=-48
Whakareatia te 12 ki te -4, ka -48.
v^{2}+14v+7^{2}=-48+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}+14v+49=-48+49
Pūrua 7.
v^{2}+14v+49=1
Tāpiri -48 ki te 49.
\left(v+7\right)^{2}=1
Tauwehea v^{2}+14v+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v+7\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v+7=1 v+7=-1
Whakarūnātia.
v=-6 v=-8
Me tango 7 mai i ngā taha e rua o te whārite.