Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(v^{2}+v-2\right)\left(2v+2\right)}{\left(v+1\right)\left(3v+6\right)}
Whakawehe \frac{v^{2}+v-2}{v+1} ki te \frac{3v+6}{2v+2} mā te whakarea \frac{v^{2}+v-2}{v+1} ki te tau huripoki o \frac{3v+6}{2v+2}.
\frac{2\left(v-1\right)\left(v+1\right)\left(v+2\right)}{3\left(v+1\right)\left(v+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2\left(v-1\right)}{3}
Me whakakore tahi te \left(v+1\right)\left(v+2\right) i te taurunga me te tauraro.
\frac{2v-2}{3}
Me whakaroha te kīanga.
\frac{\left(v^{2}+v-2\right)\left(2v+2\right)}{\left(v+1\right)\left(3v+6\right)}
Whakawehe \frac{v^{2}+v-2}{v+1} ki te \frac{3v+6}{2v+2} mā te whakarea \frac{v^{2}+v-2}{v+1} ki te tau huripoki o \frac{3v+6}{2v+2}.
\frac{2\left(v-1\right)\left(v+1\right)\left(v+2\right)}{3\left(v+1\right)\left(v+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2\left(v-1\right)}{3}
Me whakakore tahi te \left(v+1\right)\left(v+2\right) i te taurunga me te tauraro.
\frac{2v-2}{3}
Me whakaroha te kīanga.