Whakaoti mō u
u=-\frac{5v}{9}+28
Whakaoti mō v
v=\frac{252-9u}{5}
Tohaina
Kua tāruatia ki te papatopenga
7\left(u-3\right)+5\left(v-4\right)=210-\left(2u-1\right)
Me whakarea ngā taha e rua o te whārite ki te 35, arā, te tauraro pātahi he tino iti rawa te kitea o 5,7,35.
7u-21+5\left(v-4\right)=210-\left(2u-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te u-3.
7u-21+5v-20=210-\left(2u-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te v-4.
7u-41+5v=210-\left(2u-1\right)
Tangohia te 20 i te -21, ka -41.
7u-41+5v=210-2u+1
Hei kimi i te tauaro o 2u-1, kimihia te tauaro o ia taurangi.
7u-41+5v=211-2u
Tāpirihia te 210 ki te 1, ka 211.
7u-41+5v+2u=211
Me tāpiri te 2u ki ngā taha e rua.
9u-41+5v=211
Pahekotia te 7u me 2u, ka 9u.
9u+5v=211+41
Me tāpiri te 41 ki ngā taha e rua.
9u+5v=252
Tāpirihia te 211 ki te 41, ka 252.
9u=252-5v
Tangohia te 5v mai i ngā taha e rua.
\frac{9u}{9}=\frac{252-5v}{9}
Whakawehea ngā taha e rua ki te 9.
u=\frac{252-5v}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
u=-\frac{5v}{9}+28
Whakawehe 252-5v ki te 9.
7\left(u-3\right)+5\left(v-4\right)=210-\left(2u-1\right)
Me whakarea ngā taha e rua o te whārite ki te 35, arā, te tauraro pātahi he tino iti rawa te kitea o 5,7,35.
7u-21+5\left(v-4\right)=210-\left(2u-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te u-3.
7u-21+5v-20=210-\left(2u-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te v-4.
7u-41+5v=210-\left(2u-1\right)
Tangohia te 20 i te -21, ka -41.
7u-41+5v=210-2u+1
Hei kimi i te tauaro o 2u-1, kimihia te tauaro o ia taurangi.
7u-41+5v=211-2u
Tāpirihia te 210 ki te 1, ka 211.
-41+5v=211-2u-7u
Tangohia te 7u mai i ngā taha e rua.
-41+5v=211-9u
Pahekotia te -2u me -7u, ka -9u.
5v=211-9u+41
Me tāpiri te 41 ki ngā taha e rua.
5v=252-9u
Tāpirihia te 211 ki te 41, ka 252.
\frac{5v}{5}=\frac{252-9u}{5}
Whakawehea ngā taha e rua ki te 5.
v=\frac{252-9u}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}