Whakaoti mō u
u=-4
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { u + 10 } { u + 1 } = \frac { u - 6 } { u + 9 }
Tohaina
Kua tāruatia ki te papatopenga
\left(u+9\right)\left(u+10\right)=\left(u+1\right)\left(u-6\right)
Tē taea kia ōrite te tāupe u ki tētahi o ngā uara -9,-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(u+1\right)\left(u+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o u+1,u+9.
u^{2}+19u+90=\left(u+1\right)\left(u-6\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te u+9 ki te u+10 ka whakakotahi i ngā kupu rite.
u^{2}+19u+90=u^{2}-5u-6
Whakamahia te āhuatanga tuaritanga hei whakarea te u+1 ki te u-6 ka whakakotahi i ngā kupu rite.
u^{2}+19u+90-u^{2}=-5u-6
Tangohia te u^{2} mai i ngā taha e rua.
19u+90=-5u-6
Pahekotia te u^{2} me -u^{2}, ka 0.
19u+90+5u=-6
Me tāpiri te 5u ki ngā taha e rua.
24u+90=-6
Pahekotia te 19u me 5u, ka 24u.
24u=-6-90
Tangohia te 90 mai i ngā taha e rua.
24u=-96
Tangohia te 90 i te -6, ka -96.
u=\frac{-96}{24}
Whakawehea ngā taha e rua ki te 24.
u=-4
Whakawehea te -96 ki te 24, kia riro ko -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}