Whakaoti mō t
t=2
t=0
Tohaina
Kua tāruatia ki te papatopenga
t=\left(t-1\right)t
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(t-1\right)\left(t+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o t^{2}-1,t+1.
t=t^{2}-t
Whakamahia te āhuatanga tohatoha hei whakarea te t-1 ki te t.
t-t^{2}=-t
Tangohia te t^{2} mai i ngā taha e rua.
t-t^{2}+t=0
Me tāpiri te t ki ngā taha e rua.
2t-t^{2}=0
Pahekotia te t me t, ka 2t.
t\left(2-t\right)=0
Tauwehea te t.
t=0 t=2
Hei kimi otinga whārite, me whakaoti te t=0 me te 2-t=0.
t=\left(t-1\right)t
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(t-1\right)\left(t+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o t^{2}-1,t+1.
t=t^{2}-t
Whakamahia te āhuatanga tohatoha hei whakarea te t-1 ki te t.
t-t^{2}=-t
Tangohia te t^{2} mai i ngā taha e rua.
t-t^{2}+t=0
Me tāpiri te t ki ngā taha e rua.
2t-t^{2}=0
Pahekotia te t me t, ka 2t.
-t^{2}+2t=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-2±\sqrt{2^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 2 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±2}{2\left(-1\right)}
Tuhia te pūtakerua o te 2^{2}.
t=\frac{-2±2}{-2}
Whakareatia 2 ki te -1.
t=\frac{0}{-2}
Nā, me whakaoti te whārite t=\frac{-2±2}{-2} ina he tāpiri te ±. Tāpiri -2 ki te 2.
t=0
Whakawehe 0 ki te -2.
t=-\frac{4}{-2}
Nā, me whakaoti te whārite t=\frac{-2±2}{-2} ina he tango te ±. Tango 2 mai i -2.
t=2
Whakawehe -4 ki te -2.
t=0 t=2
Kua oti te whārite te whakatau.
t=\left(t-1\right)t
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(t-1\right)\left(t+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o t^{2}-1,t+1.
t=t^{2}-t
Whakamahia te āhuatanga tohatoha hei whakarea te t-1 ki te t.
t-t^{2}=-t
Tangohia te t^{2} mai i ngā taha e rua.
t-t^{2}+t=0
Me tāpiri te t ki ngā taha e rua.
2t-t^{2}=0
Pahekotia te t me t, ka 2t.
-t^{2}+2t=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-t^{2}+2t}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
t^{2}+\frac{2}{-1}t=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
t^{2}-2t=\frac{0}{-1}
Whakawehe 2 ki te -1.
t^{2}-2t=0
Whakawehe 0 ki te -1.
t^{2}-2t+1=1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
\left(t-1\right)^{2}=1
Tauwehea t^{2}-2t+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-1=1 t-1=-1
Whakarūnātia.
t=2 t=0
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}