Whakaoti mō t
t = -\frac{7}{2} = -3\frac{1}{2} = -3.5
t=1
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { t ^ { 2 } + 3 t } { 2 } = \frac { t + 7 } { 4 }
Tohaina
Kua tāruatia ki te papatopenga
2\left(t^{2}+3t\right)=t+7
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
2t^{2}+6t=t+7
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te t^{2}+3t.
2t^{2}+6t-t=7
Tangohia te t mai i ngā taha e rua.
2t^{2}+5t=7
Pahekotia te 6t me -t, ka 5t.
2t^{2}+5t-7=0
Tangohia te 7 mai i ngā taha e rua.
a+b=5 ab=2\left(-7\right)=-14
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2t^{2}+at+bt-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,14 -2,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -14.
-1+14=13 -2+7=5
Tātaihia te tapeke mō ia takirua.
a=-2 b=7
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(2t^{2}-2t\right)+\left(7t-7\right)
Tuhia anō te 2t^{2}+5t-7 hei \left(2t^{2}-2t\right)+\left(7t-7\right).
2t\left(t-1\right)+7\left(t-1\right)
Tauwehea te 2t i te tuatahi me te 7 i te rōpū tuarua.
\left(t-1\right)\left(2t+7\right)
Whakatauwehea atu te kīanga pātahi t-1 mā te whakamahi i te āhuatanga tātai tohatoha.
t=1 t=-\frac{7}{2}
Hei kimi otinga whārite, me whakaoti te t-1=0 me te 2t+7=0.
2\left(t^{2}+3t\right)=t+7
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
2t^{2}+6t=t+7
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te t^{2}+3t.
2t^{2}+6t-t=7
Tangohia te t mai i ngā taha e rua.
2t^{2}+5t=7
Pahekotia te 6t me -t, ka 5t.
2t^{2}+5t-7=0
Tangohia te 7 mai i ngā taha e rua.
t=\frac{-5±\sqrt{5^{2}-4\times 2\left(-7\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 5 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\times 2\left(-7\right)}}{2\times 2}
Pūrua 5.
t=\frac{-5±\sqrt{25-8\left(-7\right)}}{2\times 2}
Whakareatia -4 ki te 2.
t=\frac{-5±\sqrt{25+56}}{2\times 2}
Whakareatia -8 ki te -7.
t=\frac{-5±\sqrt{81}}{2\times 2}
Tāpiri 25 ki te 56.
t=\frac{-5±9}{2\times 2}
Tuhia te pūtakerua o te 81.
t=\frac{-5±9}{4}
Whakareatia 2 ki te 2.
t=\frac{4}{4}
Nā, me whakaoti te whārite t=\frac{-5±9}{4} ina he tāpiri te ±. Tāpiri -5 ki te 9.
t=1
Whakawehe 4 ki te 4.
t=-\frac{14}{4}
Nā, me whakaoti te whārite t=\frac{-5±9}{4} ina he tango te ±. Tango 9 mai i -5.
t=-\frac{7}{2}
Whakahekea te hautanga \frac{-14}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t=1 t=-\frac{7}{2}
Kua oti te whārite te whakatau.
2\left(t^{2}+3t\right)=t+7
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4.
2t^{2}+6t=t+7
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te t^{2}+3t.
2t^{2}+6t-t=7
Tangohia te t mai i ngā taha e rua.
2t^{2}+5t=7
Pahekotia te 6t me -t, ka 5t.
\frac{2t^{2}+5t}{2}=\frac{7}{2}
Whakawehea ngā taha e rua ki te 2.
t^{2}+\frac{5}{2}t=\frac{7}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
t^{2}+\frac{5}{2}t+\left(\frac{5}{4}\right)^{2}=\frac{7}{2}+\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+\frac{5}{2}t+\frac{25}{16}=\frac{7}{2}+\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}+\frac{5}{2}t+\frac{25}{16}=\frac{81}{16}
Tāpiri \frac{7}{2} ki te \frac{25}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t+\frac{5}{4}\right)^{2}=\frac{81}{16}
Tauwehea t^{2}+\frac{5}{2}t+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{5}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{5}{4}=\frac{9}{4} t+\frac{5}{4}=-\frac{9}{4}
Whakarūnātia.
t=1 t=-\frac{7}{2}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}