Whakaoti mō s
s=2
Tohaina
Kua tāruatia ki te papatopenga
\left(s+5\right)\left(s-7\right)=\left(s+3\right)\left(s-9\right)
Tē taea kia ōrite te tāupe s ki tētahi o ngā uara -5,-3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(s+3\right)\left(s+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o s+3,s+5.
s^{2}-2s-35=\left(s+3\right)\left(s-9\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te s+5 ki te s-7 ka whakakotahi i ngā kupu rite.
s^{2}-2s-35=s^{2}-6s-27
Whakamahia te āhuatanga tuaritanga hei whakarea te s+3 ki te s-9 ka whakakotahi i ngā kupu rite.
s^{2}-2s-35-s^{2}=-6s-27
Tangohia te s^{2} mai i ngā taha e rua.
-2s-35=-6s-27
Pahekotia te s^{2} me -s^{2}, ka 0.
-2s-35+6s=-27
Me tāpiri te 6s ki ngā taha e rua.
4s-35=-27
Pahekotia te -2s me 6s, ka 4s.
4s=-27+35
Me tāpiri te 35 ki ngā taha e rua.
4s=8
Tāpirihia te -27 ki te 35, ka 8.
s=\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
s=2
Whakawehea te 8 ki te 4, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}