Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(r^{1}\right)^{1}\times \frac{1}{\pi r^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
1^{1}\left(r^{1}\right)^{1}\times \frac{1}{\pi }\times \frac{1}{r^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
1^{1}\times \frac{1}{\pi }\left(r^{1}\right)^{1}\times \frac{1}{r^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
1^{1}\times \frac{1}{\pi }r^{1}r^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
1^{1}\times \frac{1}{\pi }r^{1}r^{-2}
Whakareatia 2 ki te -1.
1^{1}\times \frac{1}{\pi }r^{1-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
1^{1}\times \frac{1}{\pi }\times \frac{1}{r}
Tāpirihia ngā taupū 1 me -2.
\frac{1}{\pi }\times \frac{1}{r}
Hīkina te \pi ki te pū -1.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{1}{\pi }r^{1-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{1}{\pi }\times \frac{1}{r})
Mahia ngā tātaitanga.
-\frac{1}{\pi }r^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-\frac{1}{\pi }\right)r^{-2}
Mahia ngā tātaitanga.