Aromātai
\frac{r^{81}}{\left(st\right)^{5}}
Kimi Pārōnaki e ai ki r
\frac{81r^{80}}{\left(st\right)^{5}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{r^{9}s^{2}t^{0}}{r^{-72}s^{3}t^{0}s^{4}t^{5}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -84 me te 12 kia riro ai te -72.
\frac{r^{9}s^{2}t^{0}}{r^{-72}s^{7}t^{0}t^{5}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 4 kia riro ai te 7.
\frac{r^{9}s^{2}t^{0}}{r^{-72}s^{7}t^{5}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 0 me te 5 kia riro ai te 5.
\frac{t^{0}r^{9}}{r^{-72}s^{5}t^{5}}
Me whakakore tahi te s^{2} i te taurunga me te tauraro.
\frac{t^{0}r^{81}}{s^{5}t^{5}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{r^{81}}{s^{5}t^{5}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{t^{0}s^{2}}{t^{0}s^{3}s^{4}t^{5}r^{12}}r^{9-\left(-84\right)})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{1}{r^{12}\left(st\right)^{5}}r^{93})
Mahia ngā tātaitanga.
93\times \frac{1}{r^{12}\left(st\right)^{5}}r^{93-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{93}{r^{12}\left(st\right)^{5}}r^{92}
Mahia ngā tātaitanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}