Aromātai
\frac{t^{4}}{sr^{7}}
Kimi Pārōnaki e ai ki s
-\frac{t^{4}}{s^{2}r^{7}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{r^{-1}s^{-1}t}{r^{6}s^{-1}t^{-1}st^{-2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -1 me te 7 kia riro ai te 6.
\frac{r^{-1}s^{-1}t}{r^{6}t^{-1}t^{-2}}
Whakareatia te s^{-1} ki te s, ka 1.
\frac{r^{-1}s^{-1}t}{r^{6}t^{-3}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -1 me te -2 kia riro ai te -3.
\frac{\frac{1}{r}\times \frac{1}{s}t^{4}}{r^{6}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\frac{1}{s}t^{4}}{r^{7}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\frac{t^{4}}{s}}{r^{7}}
Tuhia te \frac{1}{s}t^{4} hei hautanga kotahi.
\frac{t^{4}}{sr^{7}}
Tuhia te \frac{\frac{t^{4}}{s}}{r^{7}} hei hautanga kotahi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}