Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)}-\frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o r\left(r+3\right) me r\left(r+2\right) ko r\left(r+2\right)\left(r+3\right). Whakareatia \frac{r+2}{r\left(r+3\right)} ki te \frac{r+2}{r+2}. Whakareatia \frac{r-1}{r\left(r+2\right)} ki te \frac{r+3}{r+3}.
\frac{\left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Tā te mea he rite te tauraro o \frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)} me \frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{r^{2}+2r+2r+4-r^{2}-3r+r+3}{r\left(r+2\right)\left(r+3\right)}
Mahia ngā whakarea i roto o \left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right).
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Whakakotahitia ngā kupu rite i r^{2}+2r+2r+4-r^{2}-3r+r+3.
\frac{2r+7}{r^{3}+5r^{2}+6r}
Whakarohaina te r\left(r+2\right)\left(r+3\right).
\frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)}-\frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o r\left(r+3\right) me r\left(r+2\right) ko r\left(r+2\right)\left(r+3\right). Whakareatia \frac{r+2}{r\left(r+3\right)} ki te \frac{r+2}{r+2}. Whakareatia \frac{r-1}{r\left(r+2\right)} ki te \frac{r+3}{r+3}.
\frac{\left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}
Tā te mea he rite te tauraro o \frac{\left(r+2\right)\left(r+2\right)}{r\left(r+2\right)\left(r+3\right)} me \frac{\left(r-1\right)\left(r+3\right)}{r\left(r+2\right)\left(r+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{r^{2}+2r+2r+4-r^{2}-3r+r+3}{r\left(r+2\right)\left(r+3\right)}
Mahia ngā whakarea i roto o \left(r+2\right)\left(r+2\right)-\left(r-1\right)\left(r+3\right).
\frac{2r+7}{r\left(r+2\right)\left(r+3\right)}
Whakakotahitia ngā kupu rite i r^{2}+2r+2r+4-r^{2}-3r+r+3.
\frac{2r+7}{r^{3}+5r^{2}+6r}
Whakarohaina te r\left(r+2\right)\left(r+3\right).