Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{q\left(-r+1\right)}{3q\left(-5p+2\right)}\times \frac{4q-10pq}{r^{2}-q^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{q-qr}{6q-15pq}.
\frac{-r+1}{3\left(-5p+2\right)}\times \frac{4q-10pq}{r^{2}-q^{2}}
Me whakakore tahi te q i te taurunga me te tauraro.
\frac{\left(-r+1\right)\left(4q-10pq\right)}{3\left(-5p+2\right)\left(r^{2}-q^{2}\right)}
Me whakarea te \frac{-r+1}{3\left(-5p+2\right)} ki te \frac{4q-10pq}{r^{2}-q^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2q\left(-5p+2\right)\left(-r+1\right)}{3\left(-5p+2\right)\left(q+r\right)\left(-q+r\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2q\left(-r+1\right)}{3\left(q+r\right)\left(-q+r\right)}
Me whakakore tahi te -5p+2 i te taurunga me te tauraro.
\frac{-2qr+2q}{-3q^{2}+3r^{2}}
Me whakaroha te kīanga.
\frac{q\left(-r+1\right)}{3q\left(-5p+2\right)}\times \frac{4q-10pq}{r^{2}-q^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{q-qr}{6q-15pq}.
\frac{-r+1}{3\left(-5p+2\right)}\times \frac{4q-10pq}{r^{2}-q^{2}}
Me whakakore tahi te q i te taurunga me te tauraro.
\frac{\left(-r+1\right)\left(4q-10pq\right)}{3\left(-5p+2\right)\left(r^{2}-q^{2}\right)}
Me whakarea te \frac{-r+1}{3\left(-5p+2\right)} ki te \frac{4q-10pq}{r^{2}-q^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2q\left(-5p+2\right)\left(-r+1\right)}{3\left(-5p+2\right)\left(q+r\right)\left(-q+r\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2q\left(-r+1\right)}{3\left(q+r\right)\left(-q+r\right)}
Me whakakore tahi te -5p+2 i te taurunga me te tauraro.
\frac{-2qr+2q}{-3q^{2}+3r^{2}}
Me whakaroha te kīanga.