Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(q^{1}\right)^{9}\times \frac{1}{-8q^{-3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
1^{9}\left(q^{1}\right)^{9}\times \frac{1}{-8}\times \frac{1}{q^{-3}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
1^{9}\times \frac{1}{-8}\left(q^{1}\right)^{9}\times \frac{1}{q^{-3}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
1^{9}\times \frac{1}{-8}q^{9}q^{-3\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
1^{9}\times \frac{1}{-8}q^{9}q^{3}
Whakareatia -3 ki te -1.
1^{9}\times \frac{1}{-8}q^{9+3}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
1^{9}\times \frac{1}{-8}q^{12}
Tāpirihia ngā taupū 9 me 3.
-\frac{1}{8}q^{12}
Hīkina te -8 ki te pū -1.
\frac{\mathrm{d}}{\mathrm{d}q}(\frac{1}{-8}q^{9-\left(-3\right)})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}q}(-\frac{1}{8}q^{12})
Mahia ngā tātaitanga.
12\left(-\frac{1}{8}\right)q^{12-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{3}{2}q^{11}
Mahia ngā tātaitanga.