Aromātai
2p+q
Whakaroha
2p+q
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)}}{\frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}}
Me whakarea te \frac{p-q}{p+q} ki te \frac{p^{2}-q^{2}}{2p-q} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)\left(4p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)\left(p^{2}-2pq+q^{2}\right)}
Whakawehe \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} ki te \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}} mā te whakarea \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} ki te tau huripoki o \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}.
\frac{\left(p+q\right)\left(2p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}{\left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
2p+q
Me whakakore tahi te \left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2} i te taurunga me te tauraro.
\frac{\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)}}{\frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}}
Me whakarea te \frac{p-q}{p+q} ki te \frac{p^{2}-q^{2}}{2p-q} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(p-q\right)\left(p^{2}-q^{2}\right)\left(4p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)\left(p^{2}-2pq+q^{2}\right)}
Whakawehe \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} ki te \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}} mā te whakarea \frac{\left(p-q\right)\left(p^{2}-q^{2}\right)}{\left(p+q\right)\left(2p-q\right)} ki te tau huripoki o \frac{p^{2}-2pq+q^{2}}{4p^{2}-q^{2}}.
\frac{\left(p+q\right)\left(2p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}{\left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
2p+q
Me whakakore tahi te \left(p+q\right)\left(2p-q\right)\left(p-q\right)^{2} i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}