Aromātai
\frac{4p}{3}+\frac{3}{4}
Whakaroha
\frac{4p}{3}+\frac{3}{4}
Tohaina
Kua tāruatia ki te papatopenga
\frac{4\left(p-3\right)}{12}+\frac{3\left(4p+7\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 4 ko 12. Whakareatia \frac{p-3}{3} ki te \frac{4}{4}. Whakareatia \frac{4p+7}{4} ki te \frac{3}{3}.
\frac{4\left(p-3\right)+3\left(4p+7\right)}{12}
Tā te mea he rite te tauraro o \frac{4\left(p-3\right)}{12} me \frac{3\left(4p+7\right)}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4p-12+12p+21}{12}
Mahia ngā whakarea i roto o 4\left(p-3\right)+3\left(4p+7\right).
\frac{16p+9}{12}
Whakakotahitia ngā kupu rite i 4p-12+12p+21.
\frac{4\left(p-3\right)}{12}+\frac{3\left(4p+7\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 4 ko 12. Whakareatia \frac{p-3}{3} ki te \frac{4}{4}. Whakareatia \frac{4p+7}{4} ki te \frac{3}{3}.
\frac{4\left(p-3\right)+3\left(4p+7\right)}{12}
Tā te mea he rite te tauraro o \frac{4\left(p-3\right)}{12} me \frac{3\left(4p+7\right)}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4p-12+12p+21}{12}
Mahia ngā whakarea i roto o 4\left(p-3\right)+3\left(4p+7\right).
\frac{16p+9}{12}
Whakakotahitia ngā kupu rite i 4p-12+12p+21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}