Whakaoti mō p
p=-2
p=5
Tohaina
Kua tāruatia ki te papatopenga
\left(p-3\right)\left(p-1\right)-\left(p+3\right)\times 2=7-3p
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(p-3\right)\left(p+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o p+3,p-3,p^{2}-9.
p^{2}-4p+3-\left(p+3\right)\times 2=7-3p
Whakamahia te āhuatanga tuaritanga hei whakarea te p-3 ki te p-1 ka whakakotahi i ngā kupu rite.
p^{2}-4p+3-\left(2p+6\right)=7-3p
Whakamahia te āhuatanga tohatoha hei whakarea te p+3 ki te 2.
p^{2}-4p+3-2p-6=7-3p
Hei kimi i te tauaro o 2p+6, kimihia te tauaro o ia taurangi.
p^{2}-6p+3-6=7-3p
Pahekotia te -4p me -2p, ka -6p.
p^{2}-6p-3=7-3p
Tangohia te 6 i te 3, ka -3.
p^{2}-6p-3-7=-3p
Tangohia te 7 mai i ngā taha e rua.
p^{2}-6p-10=-3p
Tangohia te 7 i te -3, ka -10.
p^{2}-6p-10+3p=0
Me tāpiri te 3p ki ngā taha e rua.
p^{2}-3p-10=0
Pahekotia te -6p me 3p, ka -3p.
a+b=-3 ab=-10
Hei whakaoti i te whārite, whakatauwehea te p^{2}-3p-10 mā te whakamahi i te tātai p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-5 b=2
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(p-5\right)\left(p+2\right)
Me tuhi anō te kīanga whakatauwehe \left(p+a\right)\left(p+b\right) mā ngā uara i tātaihia.
p=5 p=-2
Hei kimi otinga whārite, me whakaoti te p-5=0 me te p+2=0.
\left(p-3\right)\left(p-1\right)-\left(p+3\right)\times 2=7-3p
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(p-3\right)\left(p+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o p+3,p-3,p^{2}-9.
p^{2}-4p+3-\left(p+3\right)\times 2=7-3p
Whakamahia te āhuatanga tuaritanga hei whakarea te p-3 ki te p-1 ka whakakotahi i ngā kupu rite.
p^{2}-4p+3-\left(2p+6\right)=7-3p
Whakamahia te āhuatanga tohatoha hei whakarea te p+3 ki te 2.
p^{2}-4p+3-2p-6=7-3p
Hei kimi i te tauaro o 2p+6, kimihia te tauaro o ia taurangi.
p^{2}-6p+3-6=7-3p
Pahekotia te -4p me -2p, ka -6p.
p^{2}-6p-3=7-3p
Tangohia te 6 i te 3, ka -3.
p^{2}-6p-3-7=-3p
Tangohia te 7 mai i ngā taha e rua.
p^{2}-6p-10=-3p
Tangohia te 7 i te -3, ka -10.
p^{2}-6p-10+3p=0
Me tāpiri te 3p ki ngā taha e rua.
p^{2}-3p-10=0
Pahekotia te -6p me 3p, ka -3p.
a+b=-3 ab=1\left(-10\right)=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei p^{2}+ap+bp-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-5 b=2
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(p^{2}-5p\right)+\left(2p-10\right)
Tuhia anō te p^{2}-3p-10 hei \left(p^{2}-5p\right)+\left(2p-10\right).
p\left(p-5\right)+2\left(p-5\right)
Tauwehea te p i te tuatahi me te 2 i te rōpū tuarua.
\left(p-5\right)\left(p+2\right)
Whakatauwehea atu te kīanga pātahi p-5 mā te whakamahi i te āhuatanga tātai tohatoha.
p=5 p=-2
Hei kimi otinga whārite, me whakaoti te p-5=0 me te p+2=0.
\left(p-3\right)\left(p-1\right)-\left(p+3\right)\times 2=7-3p
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(p-3\right)\left(p+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o p+3,p-3,p^{2}-9.
p^{2}-4p+3-\left(p+3\right)\times 2=7-3p
Whakamahia te āhuatanga tuaritanga hei whakarea te p-3 ki te p-1 ka whakakotahi i ngā kupu rite.
p^{2}-4p+3-\left(2p+6\right)=7-3p
Whakamahia te āhuatanga tohatoha hei whakarea te p+3 ki te 2.
p^{2}-4p+3-2p-6=7-3p
Hei kimi i te tauaro o 2p+6, kimihia te tauaro o ia taurangi.
p^{2}-6p+3-6=7-3p
Pahekotia te -4p me -2p, ka -6p.
p^{2}-6p-3=7-3p
Tangohia te 6 i te 3, ka -3.
p^{2}-6p-3-7=-3p
Tangohia te 7 mai i ngā taha e rua.
p^{2}-6p-10=-3p
Tangohia te 7 i te -3, ka -10.
p^{2}-6p-10+3p=0
Me tāpiri te 3p ki ngā taha e rua.
p^{2}-3p-10=0
Pahekotia te -6p me 3p, ka -3p.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-10\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-3\right)±\sqrt{9-4\left(-10\right)}}{2}
Pūrua -3.
p=\frac{-\left(-3\right)±\sqrt{9+40}}{2}
Whakareatia -4 ki te -10.
p=\frac{-\left(-3\right)±\sqrt{49}}{2}
Tāpiri 9 ki te 40.
p=\frac{-\left(-3\right)±7}{2}
Tuhia te pūtakerua o te 49.
p=\frac{3±7}{2}
Ko te tauaro o -3 ko 3.
p=\frac{10}{2}
Nā, me whakaoti te whārite p=\frac{3±7}{2} ina he tāpiri te ±. Tāpiri 3 ki te 7.
p=5
Whakawehe 10 ki te 2.
p=-\frac{4}{2}
Nā, me whakaoti te whārite p=\frac{3±7}{2} ina he tango te ±. Tango 7 mai i 3.
p=-2
Whakawehe -4 ki te 2.
p=5 p=-2
Kua oti te whārite te whakatau.
\left(p-3\right)\left(p-1\right)-\left(p+3\right)\times 2=7-3p
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(p-3\right)\left(p+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o p+3,p-3,p^{2}-9.
p^{2}-4p+3-\left(p+3\right)\times 2=7-3p
Whakamahia te āhuatanga tuaritanga hei whakarea te p-3 ki te p-1 ka whakakotahi i ngā kupu rite.
p^{2}-4p+3-\left(2p+6\right)=7-3p
Whakamahia te āhuatanga tohatoha hei whakarea te p+3 ki te 2.
p^{2}-4p+3-2p-6=7-3p
Hei kimi i te tauaro o 2p+6, kimihia te tauaro o ia taurangi.
p^{2}-6p+3-6=7-3p
Pahekotia te -4p me -2p, ka -6p.
p^{2}-6p-3=7-3p
Tangohia te 6 i te 3, ka -3.
p^{2}-6p-3+3p=7
Me tāpiri te 3p ki ngā taha e rua.
p^{2}-3p-3=7
Pahekotia te -6p me 3p, ka -3p.
p^{2}-3p=7+3
Me tāpiri te 3 ki ngā taha e rua.
p^{2}-3p=10
Tāpirihia te 7 ki te 3, ka 10.
p^{2}-3p+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-3p+\frac{9}{4}=10+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}-3p+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(p-\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea p^{2}-3p+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{3}{2}=\frac{7}{2} p-\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
p=5 p=-2
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}