Aromātai
p+2
Kimi Pārōnaki e ai ki p
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{p^{2}}{p-2}+\frac{4\left(-1\right)}{p-2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o p-2 me 2-p ko p-2. Whakareatia \frac{4}{2-p} ki te \frac{-1}{-1}.
\frac{p^{2}+4\left(-1\right)}{p-2}
Tā te mea he rite te tauraro o \frac{p^{2}}{p-2} me \frac{4\left(-1\right)}{p-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{p^{2}-4}{p-2}
Mahia ngā whakarea i roto o p^{2}+4\left(-1\right).
\frac{\left(p-2\right)\left(p+2\right)}{p-2}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{p^{2}-4}{p-2}.
p+2
Me whakakore tahi te p-2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{p^{2}}{p-2}+\frac{4\left(-1\right)}{p-2})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o p-2 me 2-p ko p-2. Whakareatia \frac{4}{2-p} ki te \frac{-1}{-1}.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{p^{2}+4\left(-1\right)}{p-2})
Tā te mea he rite te tauraro o \frac{p^{2}}{p-2} me \frac{4\left(-1\right)}{p-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{p^{2}-4}{p-2})
Mahia ngā whakarea i roto o p^{2}+4\left(-1\right).
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{\left(p-2\right)\left(p+2\right)}{p-2})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{p^{2}-4}{p-2}.
\frac{\mathrm{d}}{\mathrm{d}p}(p+2)
Me whakakore tahi te p-2 i te taurunga me te tauraro.
p^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
p^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}