Whakaoti mō p
p=4
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { p + 5 } { p - 1 } = \frac { p + 2 } { p - 2 }
Tohaina
Kua tāruatia ki te papatopenga
\left(p-2\right)\left(p+5\right)=\left(p-1\right)\left(p+2\right)
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara 1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(p-2\right)\left(p-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o p-1,p-2.
p^{2}+3p-10=\left(p-1\right)\left(p+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te p-2 ki te p+5 ka whakakotahi i ngā kupu rite.
p^{2}+3p-10=p^{2}+p-2
Whakamahia te āhuatanga tuaritanga hei whakarea te p-1 ki te p+2 ka whakakotahi i ngā kupu rite.
p^{2}+3p-10-p^{2}=p-2
Tangohia te p^{2} mai i ngā taha e rua.
3p-10=p-2
Pahekotia te p^{2} me -p^{2}, ka 0.
3p-10-p=-2
Tangohia te p mai i ngā taha e rua.
2p-10=-2
Pahekotia te 3p me -p, ka 2p.
2p=-2+10
Me tāpiri te 10 ki ngā taha e rua.
2p=8
Tāpirihia te -2 ki te 10, ka 8.
p=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
p=4
Whakawehea te 8 ki te 2, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}