Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p+5=1-p\left(p-6\right)
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te p\left(p+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o p^{2}+p,p+1.
p+5=1-\left(p^{2}-6p\right)
Whakamahia te āhuatanga tohatoha hei whakarea te p ki te p-6.
p+5=1-p^{2}+6p
Hei kimi i te tauaro o p^{2}-6p, kimihia te tauaro o ia taurangi.
p+5-1=-p^{2}+6p
Tangohia te 1 mai i ngā taha e rua.
p+4=-p^{2}+6p
Tangohia te 1 i te 5, ka 4.
p+4+p^{2}=6p
Me tāpiri te p^{2} ki ngā taha e rua.
p+4+p^{2}-6p=0
Tangohia te 6p mai i ngā taha e rua.
-5p+4+p^{2}=0
Pahekotia te p me -6p, ka -5p.
p^{2}-5p+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=4
Hei whakaoti i te whārite, whakatauwehea te p^{2}-5p+4 mā te whakamahi i te tātai p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(p-4\right)\left(p-1\right)
Me tuhi anō te kīanga whakatauwehe \left(p+a\right)\left(p+b\right) mā ngā uara i tātaihia.
p=4 p=1
Hei kimi otinga whārite, me whakaoti te p-4=0 me te p-1=0.
p+5=1-p\left(p-6\right)
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te p\left(p+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o p^{2}+p,p+1.
p+5=1-\left(p^{2}-6p\right)
Whakamahia te āhuatanga tohatoha hei whakarea te p ki te p-6.
p+5=1-p^{2}+6p
Hei kimi i te tauaro o p^{2}-6p, kimihia te tauaro o ia taurangi.
p+5-1=-p^{2}+6p
Tangohia te 1 mai i ngā taha e rua.
p+4=-p^{2}+6p
Tangohia te 1 i te 5, ka 4.
p+4+p^{2}=6p
Me tāpiri te p^{2} ki ngā taha e rua.
p+4+p^{2}-6p=0
Tangohia te 6p mai i ngā taha e rua.
-5p+4+p^{2}=0
Pahekotia te p me -6p, ka -5p.
p^{2}-5p+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=1\times 4=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei p^{2}+ap+bp+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(p^{2}-4p\right)+\left(-p+4\right)
Tuhia anō te p^{2}-5p+4 hei \left(p^{2}-4p\right)+\left(-p+4\right).
p\left(p-4\right)-\left(p-4\right)
Tauwehea te p i te tuatahi me te -1 i te rōpū tuarua.
\left(p-4\right)\left(p-1\right)
Whakatauwehea atu te kīanga pātahi p-4 mā te whakamahi i te āhuatanga tātai tohatoha.
p=4 p=1
Hei kimi otinga whārite, me whakaoti te p-4=0 me te p-1=0.
p+5=1-p\left(p-6\right)
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te p\left(p+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o p^{2}+p,p+1.
p+5=1-\left(p^{2}-6p\right)
Whakamahia te āhuatanga tohatoha hei whakarea te p ki te p-6.
p+5=1-p^{2}+6p
Hei kimi i te tauaro o p^{2}-6p, kimihia te tauaro o ia taurangi.
p+5-1=-p^{2}+6p
Tangohia te 1 mai i ngā taha e rua.
p+4=-p^{2}+6p
Tangohia te 1 i te 5, ka 4.
p+4+p^{2}=6p
Me tāpiri te p^{2} ki ngā taha e rua.
p+4+p^{2}-6p=0
Tangohia te 6p mai i ngā taha e rua.
-5p+4+p^{2}=0
Pahekotia te p me -6p, ka -5p.
p^{2}-5p+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Pūrua -5.
p=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Whakareatia -4 ki te 4.
p=\frac{-\left(-5\right)±\sqrt{9}}{2}
Tāpiri 25 ki te -16.
p=\frac{-\left(-5\right)±3}{2}
Tuhia te pūtakerua o te 9.
p=\frac{5±3}{2}
Ko te tauaro o -5 ko 5.
p=\frac{8}{2}
Nā, me whakaoti te whārite p=\frac{5±3}{2} ina he tāpiri te ±. Tāpiri 5 ki te 3.
p=4
Whakawehe 8 ki te 2.
p=\frac{2}{2}
Nā, me whakaoti te whārite p=\frac{5±3}{2} ina he tango te ±. Tango 3 mai i 5.
p=1
Whakawehe 2 ki te 2.
p=4 p=1
Kua oti te whārite te whakatau.
p+5=1-p\left(p-6\right)
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te p\left(p+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o p^{2}+p,p+1.
p+5=1-\left(p^{2}-6p\right)
Whakamahia te āhuatanga tohatoha hei whakarea te p ki te p-6.
p+5=1-p^{2}+6p
Hei kimi i te tauaro o p^{2}-6p, kimihia te tauaro o ia taurangi.
p+5+p^{2}=1+6p
Me tāpiri te p^{2} ki ngā taha e rua.
p+5+p^{2}-6p=1
Tangohia te 6p mai i ngā taha e rua.
-5p+5+p^{2}=1
Pahekotia te p me -6p, ka -5p.
-5p+p^{2}=1-5
Tangohia te 5 mai i ngā taha e rua.
-5p+p^{2}=-4
Tangohia te 5 i te 1, ka -4.
p^{2}-5p=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
p^{2}-5p+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-5p+\frac{25}{4}=-4+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}-5p+\frac{25}{4}=\frac{9}{4}
Tāpiri -4 ki te \frac{25}{4}.
\left(p-\frac{5}{2}\right)^{2}=\frac{9}{4}
Tauwehea te p^{2}-5p+\frac{25}{4}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{5}{2}=\frac{3}{2} p-\frac{5}{2}=-\frac{3}{2}
Whakarūnātia.
p=4 p=1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.