Whakaoti mō n
n=9
Tohaina
Kua tāruatia ki te papatopenga
n-6=3\left(n-8\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 6,2.
n-6=3n-24
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te n-8.
n-6-3n=-24
Tangohia te 3n mai i ngā taha e rua.
-2n-6=-24
Pahekotia te n me -3n, ka -2n.
-2n=-24+6
Me tāpiri te 6 ki ngā taha e rua.
-2n=-18
Tāpirihia te -24 ki te 6, ka -18.
n=\frac{-18}{-2}
Whakawehea ngā taha e rua ki te -2.
n=9
Whakawehea te -18 ki te -2, kia riro ko 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}