Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{n-1}{10n+10}-3
Whakawehea te 6 ki te 2, kia riro ko 3.
\frac{n-1}{10\left(n+1\right)}-3
Tauwehea te 10n+10.
\frac{n-1}{10\left(n+1\right)}-\frac{3\times 10\left(n+1\right)}{10\left(n+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{10\left(n+1\right)}{10\left(n+1\right)}.
\frac{n-1-3\times 10\left(n+1\right)}{10\left(n+1\right)}
Tā te mea he rite te tauraro o \frac{n-1}{10\left(n+1\right)} me \frac{3\times 10\left(n+1\right)}{10\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{n-1-30n-30}{10\left(n+1\right)}
Mahia ngā whakarea i roto o n-1-3\times 10\left(n+1\right).
\frac{-29n-31}{10\left(n+1\right)}
Whakakotahitia ngā kupu rite i n-1-30n-30.
\frac{-29n-31}{10n+10}
Whakarohaina te 10\left(n+1\right).
\frac{n-1}{10n+10}-3
Whakawehea te 6 ki te 2, kia riro ko 3.
\frac{n-1}{10\left(n+1\right)}-3
Tauwehea te 10n+10.
\frac{n-1}{10\left(n+1\right)}-\frac{3\times 10\left(n+1\right)}{10\left(n+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{10\left(n+1\right)}{10\left(n+1\right)}.
\frac{n-1-3\times 10\left(n+1\right)}{10\left(n+1\right)}
Tā te mea he rite te tauraro o \frac{n-1}{10\left(n+1\right)} me \frac{3\times 10\left(n+1\right)}{10\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{n-1-30n-30}{10\left(n+1\right)}
Mahia ngā whakarea i roto o n-1-3\times 10\left(n+1\right).
\frac{-29n-31}{10\left(n+1\right)}
Whakakotahitia ngā kupu rite i n-1-30n-30.
\frac{-29n-31}{10n+10}
Whakarohaina te 10\left(n+1\right).