Aromātai
-\frac{m\left(m+n\right)}{n}
Whakaroha
-\frac{m^{2}+mn}{n}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia n ki te \frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Tā te mea he rite te tauraro o \frac{n\left(n-m\right)}{n-m} me \frac{n^{2}}{n-m}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Mahia ngā whakarea i roto o n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Whakakotahitia ngā kupu rite i n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+1}
Tauwehea te n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}+\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
Tā te mea he rite te tauraro o \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} me \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}-m^{2}+mn-nm+n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Mahia ngā whakarea i roto o m^{2}+\left(m+n\right)\left(-m+n\right).
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Whakakotahitia ngā kupu rite i m^{2}-m^{2}+mn-nm+n^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Whakawehe \frac{-nm}{n-m} ki te \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} mā te whakarea \frac{-nm}{n-m} ki te tau huripoki o \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Me whakakore tahi te n\left(-m+n\right) i te taurunga me te tauraro.
\frac{-m^{2}-mn}{n}
Whakamahia te āhuatanga tohatoha hei whakarea te -m ki te m+n.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia n ki te \frac{n-m}{n-m}.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Tā te mea he rite te tauraro o \frac{n\left(n-m\right)}{n-m} me \frac{n^{2}}{n-m}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Mahia ngā whakarea i roto o n\left(n-m\right)-n^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
Whakakotahitia ngā kupu rite i n^{2}-nm-n^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+1}
Tauwehea te n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}+\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
Tā te mea he rite te tauraro o \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} me \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}-m^{2}+mn-nm+n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Mahia ngā whakarea i roto o m^{2}+\left(m+n\right)\left(-m+n\right).
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
Whakakotahitia ngā kupu rite i m^{2}-m^{2}+mn-nm+n^{2}.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
Whakawehe \frac{-nm}{n-m} ki te \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} mā te whakarea \frac{-nm}{n-m} ki te tau huripoki o \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}.
\frac{-m\left(m+n\right)}{n}
Me whakakore tahi te n\left(-m+n\right) i te taurunga me te tauraro.
\frac{-m^{2}-mn}{n}
Whakamahia te āhuatanga tohatoha hei whakarea te -m ki te m+n.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}