Whakaoti mō n
n = \frac{528}{65} = 8\frac{8}{65} \approx 8.123076923
Tohaina
Kua tāruatia ki te papatopenga
\frac{n\times 5}{4\times 5+1}=\frac{\frac{6\times 7+2}{7}}{\frac{3\times 4+1}{4}}
Whakawehe n ki te \frac{4\times 5+1}{5} mā te whakarea n ki te tau huripoki o \frac{4\times 5+1}{5}.
\frac{n\times 5}{20+1}=\frac{\frac{6\times 7+2}{7}}{\frac{3\times 4+1}{4}}
Whakareatia te 4 ki te 5, ka 20.
\frac{n\times 5}{21}=\frac{\frac{6\times 7+2}{7}}{\frac{3\times 4+1}{4}}
Tāpirihia te 20 ki te 1, ka 21.
\frac{n\times 5}{21}=\frac{\left(6\times 7+2\right)\times 4}{7\left(3\times 4+1\right)}
Whakawehe \frac{6\times 7+2}{7} ki te \frac{3\times 4+1}{4} mā te whakarea \frac{6\times 7+2}{7} ki te tau huripoki o \frac{3\times 4+1}{4}.
\frac{n\times 5}{21}=\frac{\left(42+2\right)\times 4}{7\left(3\times 4+1\right)}
Whakareatia te 6 ki te 7, ka 42.
\frac{n\times 5}{21}=\frac{44\times 4}{7\left(3\times 4+1\right)}
Tāpirihia te 42 ki te 2, ka 44.
\frac{n\times 5}{21}=\frac{176}{7\left(3\times 4+1\right)}
Whakareatia te 44 ki te 4, ka 176.
\frac{n\times 5}{21}=\frac{176}{7\left(12+1\right)}
Whakareatia te 3 ki te 4, ka 12.
\frac{n\times 5}{21}=\frac{176}{7\times 13}
Tāpirihia te 12 ki te 1, ka 13.
\frac{n\times 5}{21}=\frac{176}{91}
Whakareatia te 7 ki te 13, ka 91.
n\times 5=\frac{176}{91}\times 21
Me whakarea ngā taha e rua ki te 21.
n\times 5=\frac{176\times 21}{91}
Tuhia te \frac{176}{91}\times 21 hei hautanga kotahi.
n\times 5=\frac{3696}{91}
Whakareatia te 176 ki te 21, ka 3696.
n\times 5=\frac{528}{13}
Whakahekea te hautanga \frac{3696}{91} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
n=\frac{\frac{528}{13}}{5}
Whakawehea ngā taha e rua ki te 5.
n=\frac{528}{13\times 5}
Tuhia te \frac{\frac{528}{13}}{5} hei hautanga kotahi.
n=\frac{528}{65}
Whakareatia te 13 ki te 5, ka 65.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}