Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3}-\frac{3n}{n}\times \frac{3n}{n-3n}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{1}{3}-3\times \frac{3n}{n-3n}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{1}{3}-3\times \frac{3n}{-2n}
Pahekotia te n me -3n, ka -2n.
\frac{1}{3}-3\times \frac{3}{-2}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{1}{3}-3\left(-\frac{3}{2}\right)
Ka taea te hautanga \frac{3}{-2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\frac{1}{3}-\frac{3\left(-3\right)}{2}
Tuhia te 3\left(-\frac{3}{2}\right) hei hautanga kotahi.
\frac{1}{3}-\frac{-9}{2}
Whakareatia te 3 ki te -3, ka -9.
\frac{1}{3}-\left(-\frac{9}{2}\right)
Ka taea te hautanga \frac{-9}{2} te tuhi anō ko -\frac{9}{2} mā te tango i te tohu tōraro.
\frac{1}{3}+\frac{9}{2}
Ko te tauaro o -\frac{9}{2} ko \frac{9}{2}.
\frac{2}{6}+\frac{27}{6}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{1}{3} me \frac{9}{2} ki te hautau me te tautūnga 6.
\frac{2+27}{6}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{27}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{6}
Tāpirihia te 2 ki te 27, ka 29.