Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n\left(2a+\left(n-1\right)d\right)=212400
Whakareatia ngā taha e rua o te whārite ki te 2.
n\left(2a+nd-d\right)=212400
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
2na+dn^{2}-nd=212400
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 2a+nd-d.
2na-nd=212400-dn^{2}
Tangohia te dn^{2} mai i ngā taha e rua.
2na=212400-dn^{2}+nd
Me tāpiri te nd ki ngā taha e rua.
2an=-dn^{2}+dn+212400
Whakaraupapatia anō ngā kīanga tau.
2na=212400+dn-dn^{2}
He hanga arowhānui tō te whārite.
\frac{2na}{2n}=\frac{212400+dn-dn^{2}}{2n}
Whakawehea ngā taha e rua ki te 2n.
a=\frac{212400+dn-dn^{2}}{2n}
Mā te whakawehe ki te 2n ka wetekia te whakareanga ki te 2n.
a=-\frac{dn}{2}+\frac{d}{2}+\frac{106200}{n}
Whakawehe -dn^{2}+dn+212400 ki te 2n.
n\left(2a+\left(n-1\right)d\right)=212400
Whakareatia ngā taha e rua o te whārite ki te 2.
n\left(2a+nd-d\right)=212400
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
2na+dn^{2}-nd=212400
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 2a+nd-d.
dn^{2}-nd=212400-2na
Tangohia te 2na mai i ngā taha e rua.
\left(n^{2}-n\right)d=212400-2na
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(n^{2}-n\right)d=212400-2an
He hanga arowhānui tō te whārite.
\frac{\left(n^{2}-n\right)d}{n^{2}-n}=\frac{212400-2an}{n^{2}-n}
Whakawehea ngā taha e rua ki te n^{2}-n.
d=\frac{212400-2an}{n^{2}-n}
Mā te whakawehe ki te n^{2}-n ka wetekia te whakareanga ki te n^{2}-n.
d=\frac{2\left(106200-an\right)}{n\left(n-1\right)}
Whakawehe 212400-2na ki te n^{2}-n.