Whakaoti mō a
a=-\frac{dn}{2}+\frac{d}{2}+\frac{106200}{n}
n\neq 0
Whakaoti mō d
\left\{\begin{matrix}d=-\frac{2\left(an-106200\right)}{n\left(n-1\right)}\text{, }&n\neq 1\text{ and }n\neq 0\\d\in \mathrm{R}\text{, }&a=106200\text{ and }n=1\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
n\left(2a+\left(n-1\right)d\right)=212400
Whakareatia ngā taha e rua o te whārite ki te 2.
n\left(2a+nd-d\right)=212400
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
2na+dn^{2}-nd=212400
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 2a+nd-d.
2na-nd=212400-dn^{2}
Tangohia te dn^{2} mai i ngā taha e rua.
2na=212400-dn^{2}+nd
Me tāpiri te nd ki ngā taha e rua.
2an=-dn^{2}+dn+212400
Whakaraupapatia anō ngā kīanga tau.
2na=212400+dn-dn^{2}
He hanga arowhānui tō te whārite.
\frac{2na}{2n}=\frac{212400+dn-dn^{2}}{2n}
Whakawehea ngā taha e rua ki te 2n.
a=\frac{212400+dn-dn^{2}}{2n}
Mā te whakawehe ki te 2n ka wetekia te whakareanga ki te 2n.
a=-\frac{dn}{2}+\frac{d}{2}+\frac{106200}{n}
Whakawehe -dn^{2}+dn+212400 ki te 2n.
n\left(2a+\left(n-1\right)d\right)=212400
Whakareatia ngā taha e rua o te whārite ki te 2.
n\left(2a+nd-d\right)=212400
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
2na+dn^{2}-nd=212400
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 2a+nd-d.
dn^{2}-nd=212400-2na
Tangohia te 2na mai i ngā taha e rua.
\left(n^{2}-n\right)d=212400-2na
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(n^{2}-n\right)d=212400-2an
He hanga arowhānui tō te whārite.
\frac{\left(n^{2}-n\right)d}{n^{2}-n}=\frac{212400-2an}{n^{2}-n}
Whakawehea ngā taha e rua ki te n^{2}-n.
d=\frac{212400-2an}{n^{2}-n}
Mā te whakawehe ki te n^{2}-n ka wetekia te whakareanga ki te n^{2}-n.
d=\frac{2\left(106200-an\right)}{n\left(n-1\right)}
Whakawehe 212400-2na ki te n^{2}-n.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}