Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki n
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(n^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}n}(n^{2})-n^{2}\frac{\mathrm{d}}{\mathrm{d}n}(n^{1}+1)}{\left(n^{1}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(n^{1}+1\right)\times 2n^{2-1}-n^{2}n^{1-1}}{\left(n^{1}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(n^{1}+1\right)\times 2n^{1}-n^{2}n^{0}}{\left(n^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{n^{1}\times 2n^{1}+2n^{1}-n^{2}n^{0}}{\left(n^{1}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2n^{1+1}+2n^{1}-n^{2}}{\left(n^{1}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2n^{2}+2n^{1}-n^{2}}{\left(n^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(2-1\right)n^{2}+2n^{1}}{\left(n^{1}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{n^{2}+2n^{1}}{\left(n^{1}+1\right)^{2}}
Tango 1 mai i 2.
\frac{n\left(n^{1}+2n^{0}\right)}{\left(n^{1}+1\right)^{2}}
Tauwehea te n.
\frac{n\left(n+2n^{0}\right)}{\left(n+1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{n\left(n+2\times 1\right)}{\left(n+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{n\left(n+2\right)}{\left(n+1\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.