Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(n^{2}+3n+2\right)\left(5n-5\right)}{\left(5n+10\right)\left(6n^{2}+6n\right)}
Whakawehe \frac{n^{2}+3n+2}{5n+10} ki te \frac{6n^{2}+6n}{5n-5} mā te whakarea \frac{n^{2}+3n+2}{5n+10} ki te tau huripoki o \frac{6n^{2}+6n}{5n-5}.
\frac{5\left(n-1\right)\left(n+1\right)\left(n+2\right)}{5\times 6n\left(n+1\right)\left(n+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{n-1}{6n}
Me whakakore tahi te 5\left(n+1\right)\left(n+2\right) i te taurunga me te tauraro.
\frac{\left(n^{2}+3n+2\right)\left(5n-5\right)}{\left(5n+10\right)\left(6n^{2}+6n\right)}
Whakawehe \frac{n^{2}+3n+2}{5n+10} ki te \frac{6n^{2}+6n}{5n-5} mā te whakarea \frac{n^{2}+3n+2}{5n+10} ki te tau huripoki o \frac{6n^{2}+6n}{5n-5}.
\frac{5\left(n-1\right)\left(n+1\right)\left(n+2\right)}{5\times 6n\left(n+1\right)\left(n+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{n-1}{6n}
Me whakakore tahi te 5\left(n+1\right)\left(n+2\right) i te taurunga me te tauraro.