Aromātai
\frac{1}{4}+\frac{1}{2n}
Whakaroha
\frac{1}{4}+\frac{1}{2n}
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { n + 4 } { 4 n + 8 } + \frac { 1 } { n ^ { 2 } + 2 n }
Tohaina
Kua tāruatia ki te papatopenga
\frac{n+4}{4\left(n+2\right)}+\frac{1}{n\left(n+2\right)}
Tauwehea te 4n+8. Tauwehea te n^{2}+2n.
\frac{\left(n+4\right)n}{4n\left(n+2\right)}+\frac{4}{4n\left(n+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4\left(n+2\right) me n\left(n+2\right) ko 4n\left(n+2\right). Whakareatia \frac{n+4}{4\left(n+2\right)} ki te \frac{n}{n}. Whakareatia \frac{1}{n\left(n+2\right)} ki te \frac{4}{4}.
\frac{\left(n+4\right)n+4}{4n\left(n+2\right)}
Tā te mea he rite te tauraro o \frac{\left(n+4\right)n}{4n\left(n+2\right)} me \frac{4}{4n\left(n+2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{n^{2}+4n+4}{4n\left(n+2\right)}
Mahia ngā whakarea i roto o \left(n+4\right)n+4.
\frac{\left(n+2\right)^{2}}{4n\left(n+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{n^{2}+4n+4}{4n\left(n+2\right)}.
\frac{n+2}{4n}
Me whakakore tahi te n+2 i te taurunga me te tauraro.
\frac{n+4}{4\left(n+2\right)}+\frac{1}{n\left(n+2\right)}
Tauwehea te 4n+8. Tauwehea te n^{2}+2n.
\frac{\left(n+4\right)n}{4n\left(n+2\right)}+\frac{4}{4n\left(n+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4\left(n+2\right) me n\left(n+2\right) ko 4n\left(n+2\right). Whakareatia \frac{n+4}{4\left(n+2\right)} ki te \frac{n}{n}. Whakareatia \frac{1}{n\left(n+2\right)} ki te \frac{4}{4}.
\frac{\left(n+4\right)n+4}{4n\left(n+2\right)}
Tā te mea he rite te tauraro o \frac{\left(n+4\right)n}{4n\left(n+2\right)} me \frac{4}{4n\left(n+2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{n^{2}+4n+4}{4n\left(n+2\right)}
Mahia ngā whakarea i roto o \left(n+4\right)n+4.
\frac{\left(n+2\right)^{2}}{4n\left(n+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{n^{2}+4n+4}{4n\left(n+2\right)}.
\frac{n+2}{4n}
Me whakakore tahi te n+2 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}