Whakaoti mō n
n\geq -\frac{4}{3}
Tohaina
Kua tāruatia ki te papatopenga
6\left(n+3\right)-12\leq 3\times 3n+10
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4,6. I te mea he tōrunga te 12, kāore e huri te ahunga koreōrite.
6n+18-12\leq 3\times 3n+10
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te n+3.
6n+6\leq 3\times 3n+10
Tangohia te 12 i te 18, ka 6.
6n+6\leq 9n+10
Whakareatia te 3 ki te 3, ka 9.
6n+6-9n\leq 10
Tangohia te 9n mai i ngā taha e rua.
-3n+6\leq 10
Pahekotia te 6n me -9n, ka -3n.
-3n\leq 10-6
Tangohia te 6 mai i ngā taha e rua.
-3n\leq 4
Tangohia te 6 i te 10, ka 4.
n\geq -\frac{4}{3}
Whakawehea ngā taha e rua ki te -3. I te mea he tōraro a -3, ka huri te ahunga koreōrite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}