Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{m-2}{m\left(m+2\right)}-\frac{m-1}{\left(m+2\right)^{2}}
Tauwehea te m^{2}+2m. Tauwehea te m^{2}+4m+4.
\frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}}-\frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m\left(m+2\right) me \left(m+2\right)^{2} ko m\left(m+2\right)^{2}. Whakareatia \frac{m-2}{m\left(m+2\right)} ki te \frac{m+2}{m+2}. Whakareatia \frac{m-1}{\left(m+2\right)^{2}} ki te \frac{m}{m}.
\frac{\left(m-2\right)\left(m+2\right)-\left(m-1\right)m}{m\left(m+2\right)^{2}}
Tā te mea he rite te tauraro o \frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}} me \frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{m^{2}+2m-2m-4-m^{2}+m}{m\left(m+2\right)^{2}}
Mahia ngā whakarea i roto o \left(m-2\right)\left(m+2\right)-\left(m-1\right)m.
\frac{m-4}{m\left(m+2\right)^{2}}
Whakakotahitia ngā kupu rite i m^{2}+2m-2m-4-m^{2}+m.
\frac{m-4}{m^{3}+4m^{2}+4m}
Whakarohaina te m\left(m+2\right)^{2}.
\frac{m-2}{m\left(m+2\right)}-\frac{m-1}{\left(m+2\right)^{2}}
Tauwehea te m^{2}+2m. Tauwehea te m^{2}+4m+4.
\frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}}-\frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m\left(m+2\right) me \left(m+2\right)^{2} ko m\left(m+2\right)^{2}. Whakareatia \frac{m-2}{m\left(m+2\right)} ki te \frac{m+2}{m+2}. Whakareatia \frac{m-1}{\left(m+2\right)^{2}} ki te \frac{m}{m}.
\frac{\left(m-2\right)\left(m+2\right)-\left(m-1\right)m}{m\left(m+2\right)^{2}}
Tā te mea he rite te tauraro o \frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}} me \frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{m^{2}+2m-2m-4-m^{2}+m}{m\left(m+2\right)^{2}}
Mahia ngā whakarea i roto o \left(m-2\right)\left(m+2\right)-\left(m-1\right)m.
\frac{m-4}{m\left(m+2\right)^{2}}
Whakakotahitia ngā kupu rite i m^{2}+2m-2m-4-m^{2}+m.
\frac{m-4}{m^{3}+4m^{2}+4m}
Whakarohaina te m\left(m+2\right)^{2}.