Aromātai
\frac{m-4}{m\left(m+2\right)^{2}}
Whakaroha
\frac{m-4}{m\left(m+2\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{m-2}{m\left(m+2\right)}-\frac{m-1}{\left(m+2\right)^{2}}
Tauwehea te m^{2}+2m. Tauwehea te m^{2}+4m+4.
\frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}}-\frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m\left(m+2\right) me \left(m+2\right)^{2} ko m\left(m+2\right)^{2}. Whakareatia \frac{m-2}{m\left(m+2\right)} ki te \frac{m+2}{m+2}. Whakareatia \frac{m-1}{\left(m+2\right)^{2}} ki te \frac{m}{m}.
\frac{\left(m-2\right)\left(m+2\right)-\left(m-1\right)m}{m\left(m+2\right)^{2}}
Tā te mea he rite te tauraro o \frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}} me \frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{m^{2}+2m-2m-4-m^{2}+m}{m\left(m+2\right)^{2}}
Mahia ngā whakarea i roto o \left(m-2\right)\left(m+2\right)-\left(m-1\right)m.
\frac{m-4}{m\left(m+2\right)^{2}}
Whakakotahitia ngā kupu rite i m^{2}+2m-2m-4-m^{2}+m.
\frac{m-4}{m^{3}+4m^{2}+4m}
Whakarohaina te m\left(m+2\right)^{2}.
\frac{m-2}{m\left(m+2\right)}-\frac{m-1}{\left(m+2\right)^{2}}
Tauwehea te m^{2}+2m. Tauwehea te m^{2}+4m+4.
\frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}}-\frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m\left(m+2\right) me \left(m+2\right)^{2} ko m\left(m+2\right)^{2}. Whakareatia \frac{m-2}{m\left(m+2\right)} ki te \frac{m+2}{m+2}. Whakareatia \frac{m-1}{\left(m+2\right)^{2}} ki te \frac{m}{m}.
\frac{\left(m-2\right)\left(m+2\right)-\left(m-1\right)m}{m\left(m+2\right)^{2}}
Tā te mea he rite te tauraro o \frac{\left(m-2\right)\left(m+2\right)}{m\left(m+2\right)^{2}} me \frac{\left(m-1\right)m}{m\left(m+2\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{m^{2}+2m-2m-4-m^{2}+m}{m\left(m+2\right)^{2}}
Mahia ngā whakarea i roto o \left(m-2\right)\left(m+2\right)-\left(m-1\right)m.
\frac{m-4}{m\left(m+2\right)^{2}}
Whakakotahitia ngā kupu rite i m^{2}+2m-2m-4-m^{2}+m.
\frac{m-4}{m^{3}+4m^{2}+4m}
Whakarohaina te m\left(m+2\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}