Whakaoti mō n
n=-\frac{m^{2}-8m+36}{4-m}
m\neq -1\text{ and }m\neq 0\text{ and }m\neq 4
Whakaoti mō m
m=\frac{\sqrt{n^{2}-80}+n+8}{2}
m=\frac{-\sqrt{n^{2}-80}+n+8}{2}\text{, }n\geq 4\sqrt{5}\text{ or }\left(n\neq -9\text{ and }n\leq -4\sqrt{5}\right)
Tohaina
Kua tāruatia ki te papatopenga
\left(m+1\right)m=\left(n+9\right)\left(m-4\right)
Tē taea kia ōrite te tāupe n ki -9 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(m+1\right)\left(n+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o n+9,m+1.
m^{2}+m=\left(n+9\right)\left(m-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te m+1 ki te m.
m^{2}+m=nm-4n+9m-36
Whakamahia te āhuatanga tohatoha hei whakarea te n+9 ki te m-4.
nm-4n+9m-36=m^{2}+m
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
nm-4n-36=m^{2}+m-9m
Tangohia te 9m mai i ngā taha e rua.
nm-4n-36=m^{2}-8m
Pahekotia te m me -9m, ka -8m.
nm-4n=m^{2}-8m+36
Me tāpiri te 36 ki ngā taha e rua.
\left(m-4\right)n=m^{2}-8m+36
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\frac{\left(m-4\right)n}{m-4}=\frac{m^{2}-8m+36}{m-4}
Whakawehea ngā taha e rua ki te m-4.
n=\frac{m^{2}-8m+36}{m-4}
Mā te whakawehe ki te m-4 ka wetekia te whakareanga ki te m-4.
n=\frac{m^{2}-8m+36}{m-4}\text{, }n\neq -9
Tē taea kia ōrite te tāupe n ki -9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}