Whakaoti mō m
m=9
Tohaina
Kua tāruatia ki te papatopenga
\left(m+1\right)m=\left(m+9\right)\left(m-4\right)
Tē taea kia ōrite te tāupe m ki tētahi o ngā uara -9,-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(m+1\right)\left(m+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o m+9,m+1.
m^{2}+m=\left(m+9\right)\left(m-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te m+1 ki te m.
m^{2}+m=m^{2}+5m-36
Whakamahia te āhuatanga tuaritanga hei whakarea te m+9 ki te m-4 ka whakakotahi i ngā kupu rite.
m^{2}+m-m^{2}=5m-36
Tangohia te m^{2} mai i ngā taha e rua.
m=5m-36
Pahekotia te m^{2} me -m^{2}, ka 0.
m-5m=-36
Tangohia te 5m mai i ngā taha e rua.
-4m=-36
Pahekotia te m me -5m, ka -4m.
m=\frac{-36}{-4}
Whakawehea ngā taha e rua ki te -4.
m=9
Whakawehea te -36 ki te -4, kia riro ko 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}