Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{5}m^{2}-\frac{6}{5}=m
Whakawehea ia wā o m^{2}-6 ki te 5, kia riro ko \frac{1}{5}m^{2}-\frac{6}{5}.
\frac{1}{5}m^{2}-\frac{6}{5}-m=0
Tangohia te m mai i ngā taha e rua.
\frac{1}{5}m^{2}-m-\frac{6}{5}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{5}\left(-\frac{6}{5}\right)}}{2\times \frac{1}{5}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{5} mō a, -1 mō b, me -\frac{6}{5} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-1\right)±\sqrt{1-\frac{4}{5}\left(-\frac{6}{5}\right)}}{2\times \frac{1}{5}}
Whakareatia -4 ki te \frac{1}{5}.
m=\frac{-\left(-1\right)±\sqrt{1+\frac{24}{25}}}{2\times \frac{1}{5}}
Whakareatia -\frac{4}{5} ki te -\frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{-\left(-1\right)±\sqrt{\frac{49}{25}}}{2\times \frac{1}{5}}
Tāpiri 1 ki te \frac{24}{25}.
m=\frac{-\left(-1\right)±\frac{7}{5}}{2\times \frac{1}{5}}
Tuhia te pūtakerua o te \frac{49}{25}.
m=\frac{1±\frac{7}{5}}{2\times \frac{1}{5}}
Ko te tauaro o -1 ko 1.
m=\frac{1±\frac{7}{5}}{\frac{2}{5}}
Whakareatia 2 ki te \frac{1}{5}.
m=\frac{\frac{12}{5}}{\frac{2}{5}}
Nā, me whakaoti te whārite m=\frac{1±\frac{7}{5}}{\frac{2}{5}} ina he tāpiri te ±. Tāpiri 1 ki te \frac{7}{5}.
m=6
Whakawehe \frac{12}{5} ki te \frac{2}{5} mā te whakarea \frac{12}{5} ki te tau huripoki o \frac{2}{5}.
m=-\frac{\frac{2}{5}}{\frac{2}{5}}
Nā, me whakaoti te whārite m=\frac{1±\frac{7}{5}}{\frac{2}{5}} ina he tango te ±. Tango \frac{7}{5} mai i 1.
m=-1
Whakawehe -\frac{2}{5} ki te \frac{2}{5} mā te whakarea -\frac{2}{5} ki te tau huripoki o \frac{2}{5}.
m=6 m=-1
Kua oti te whārite te whakatau.
\frac{1}{5}m^{2}-\frac{6}{5}=m
Whakawehea ia wā o m^{2}-6 ki te 5, kia riro ko \frac{1}{5}m^{2}-\frac{6}{5}.
\frac{1}{5}m^{2}-\frac{6}{5}-m=0
Tangohia te m mai i ngā taha e rua.
\frac{1}{5}m^{2}-m=\frac{6}{5}
Me tāpiri te \frac{6}{5} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\frac{1}{5}m^{2}-m}{\frac{1}{5}}=\frac{\frac{6}{5}}{\frac{1}{5}}
Me whakarea ngā taha e rua ki te 5.
m^{2}+\left(-\frac{1}{\frac{1}{5}}\right)m=\frac{\frac{6}{5}}{\frac{1}{5}}
Mā te whakawehe ki te \frac{1}{5} ka wetekia te whakareanga ki te \frac{1}{5}.
m^{2}-5m=\frac{\frac{6}{5}}{\frac{1}{5}}
Whakawehe -1 ki te \frac{1}{5} mā te whakarea -1 ki te tau huripoki o \frac{1}{5}.
m^{2}-5m=6
Whakawehe \frac{6}{5} ki te \frac{1}{5} mā te whakarea \frac{6}{5} ki te tau huripoki o \frac{1}{5}.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-5m+\frac{25}{4}=6+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-5m+\frac{25}{4}=\frac{49}{4}
Tāpiri 6 ki te \frac{25}{4}.
\left(m-\frac{5}{2}\right)^{2}=\frac{49}{4}
Tauwehea m^{2}-5m+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{5}{2}=\frac{7}{2} m-\frac{5}{2}=-\frac{7}{2}
Whakarūnātia.
m=6 m=-1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.