Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(m^{2}-4\right)\times 16n^{2}}{20n^{4}\left(3m+6\right)}
Whakawehe \frac{m^{2}-4}{20n^{4}} ki te \frac{3m+6}{16n^{2}} mā te whakarea \frac{m^{2}-4}{20n^{4}} ki te tau huripoki o \frac{3m+6}{16n^{2}}.
\frac{4\left(m^{2}-4\right)}{5\left(3m+6\right)n^{2}}
Me whakakore tahi te 4n^{2} i te taurunga me te tauraro.
\frac{4\left(m-2\right)\left(m+2\right)}{3\times 5\left(m+2\right)n^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{4\left(m-2\right)}{3\times 5n^{2}}
Me whakakore tahi te m+2 i te taurunga me te tauraro.
\frac{4m-8}{15n^{2}}
Me whakaroha te kīanga.
\frac{\left(m^{2}-4\right)\times 16n^{2}}{20n^{4}\left(3m+6\right)}
Whakawehe \frac{m^{2}-4}{20n^{4}} ki te \frac{3m+6}{16n^{2}} mā te whakarea \frac{m^{2}-4}{20n^{4}} ki te tau huripoki o \frac{3m+6}{16n^{2}}.
\frac{4\left(m^{2}-4\right)}{5\left(3m+6\right)n^{2}}
Me whakakore tahi te 4n^{2} i te taurunga me te tauraro.
\frac{4\left(m-2\right)\left(m+2\right)}{3\times 5\left(m+2\right)n^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{4\left(m-2\right)}{3\times 5n^{2}}
Me whakakore tahi te m+2 i te taurunga me te tauraro.
\frac{4m-8}{15n^{2}}
Me whakaroha te kīanga.