Whakaoti mō m
m=3
Tohaina
Kua tāruatia ki te papatopenga
m^{2}=3m
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3m.
m^{2}-3m=0
Tangohia te 3m mai i ngā taha e rua.
m\left(m-3\right)=0
Tauwehea te m.
m=0 m=3
Hei kimi otinga whārite, me whakaoti te m=0 me te m-3=0.
m=3
Tē taea kia ōrite te tāupe m ki 0.
m^{2}=3m
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3m.
m^{2}-3m=0
Tangohia te 3m mai i ngā taha e rua.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-3\right)±3}{2}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
m=\frac{3±3}{2}
Ko te tauaro o -3 ko 3.
m=\frac{6}{2}
Nā, me whakaoti te whārite m=\frac{3±3}{2} ina he tāpiri te ±. Tāpiri 3 ki te 3.
m=3
Whakawehe 6 ki te 2.
m=\frac{0}{2}
Nā, me whakaoti te whārite m=\frac{3±3}{2} ina he tango te ±. Tango 3 mai i 3.
m=0
Whakawehe 0 ki te 2.
m=3 m=0
Kua oti te whārite te whakatau.
m=3
Tē taea kia ōrite te tāupe m ki 0.
m^{2}=3m
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3m.
m^{2}-3m=0
Tangohia te 3m mai i ngā taha e rua.
m^{2}-3m+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-3m+\frac{9}{4}=\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(m-\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea m^{2}-3m+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{3}{2}=\frac{3}{2} m-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
m=3 m=0
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
m=3
Tē taea kia ōrite te tāupe m ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}