Aromātai
\frac{n^{2}}{m^{4}}+\frac{1}{mn}
Whakaroha
\frac{n^{2}}{m^{4}}+\frac{1}{mn}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(n^{-3}m^{3}+1\right)m^{-3}}{n^{-2}m}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{n^{-3}m^{3}+1}{n^{-2}m^{4}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1+\left(\frac{1}{n}m\right)^{3}}{n^{-2}m^{4}}
Me whakaroha te kīanga.
\frac{1+\left(\frac{m}{n}\right)^{3}}{n^{-2}m^{4}}
Tuhia te \frac{1}{n}m hei hautanga kotahi.
\frac{1+\frac{m^{3}}{n^{3}}}{n^{-2}m^{4}}
Kia whakarewa i te \frac{m}{n} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{n^{3}}{n^{3}}+\frac{m^{3}}{n^{3}}}{n^{-2}m^{4}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n^{3}}{n^{3}}.
\frac{\frac{n^{3}+m^{3}}{n^{3}}}{n^{-2}m^{4}}
Tā te mea he rite te tauraro o \frac{n^{3}}{n^{3}} me \frac{m^{3}}{n^{3}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{n^{3}+m^{3}}{n^{3}n^{-2}m^{4}}
Tuhia te \frac{\frac{n^{3}+m^{3}}{n^{3}}}{n^{-2}m^{4}} hei hautanga kotahi.
\frac{n^{3}+m^{3}}{n^{1}m^{4}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te -2 kia riro ai te 1.
\frac{n^{3}+m^{3}}{nm^{4}}
Tātaihia te n mā te pū o 1, kia riro ko n.
\frac{\left(n^{-3}m^{3}+1\right)m^{-3}}{n^{-2}m}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{n^{-3}m^{3}+1}{n^{-2}m^{4}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1+\left(\frac{1}{n}m\right)^{3}}{n^{-2}m^{4}}
Me whakaroha te kīanga.
\frac{1+\left(\frac{m}{n}\right)^{3}}{n^{-2}m^{4}}
Tuhia te \frac{1}{n}m hei hautanga kotahi.
\frac{1+\frac{m^{3}}{n^{3}}}{n^{-2}m^{4}}
Kia whakarewa i te \frac{m}{n} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{n^{3}}{n^{3}}+\frac{m^{3}}{n^{3}}}{n^{-2}m^{4}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n^{3}}{n^{3}}.
\frac{\frac{n^{3}+m^{3}}{n^{3}}}{n^{-2}m^{4}}
Tā te mea he rite te tauraro o \frac{n^{3}}{n^{3}} me \frac{m^{3}}{n^{3}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{n^{3}+m^{3}}{n^{3}n^{-2}m^{4}}
Tuhia te \frac{\frac{n^{3}+m^{3}}{n^{3}}}{n^{-2}m^{4}} hei hautanga kotahi.
\frac{n^{3}+m^{3}}{n^{1}m^{4}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te -2 kia riro ai te 1.
\frac{n^{3}+m^{3}}{nm^{4}}
Tātaihia te n mā te pū o 1, kia riro ko n.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}