Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Me whakarea te \frac{m+n}{2m} ki te \frac{m-n}{5m^{3}n} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Me whakarea te \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} ki te \frac{1}{10n^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
Whakareatia te 2 ki te 5, ka 10.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
Whakareatia te 10 ki te 10, ka 100.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Whakaarohia te \left(m+n\right)\left(m-n\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Me whakarea te \frac{m+n}{2m} ki te \frac{m-n}{5m^{3}n} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Me whakarea te \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} ki te \frac{1}{10n^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
Whakareatia te 2 ki te 5, ka 10.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
Whakareatia te 10 ki te 10, ka 100.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Whakaarohia te \left(m+n\right)\left(m-n\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.