Aromātai
\frac{m^{2}-n^{2}}{100n^{3}m^{4}}
Whakaroha
-\frac{n^{2}-m^{2}}{100n^{3}m^{4}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Me whakarea te \frac{m+n}{2m} ki te \frac{m-n}{5m^{3}n} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Me whakarea te \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} ki te \frac{1}{10n^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
Whakareatia te 2 ki te 5, ka 10.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
Whakareatia te 10 ki te 10, ka 100.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Whakaarohia te \left(m+n\right)\left(m-n\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Me whakarea te \frac{m+n}{2m} ki te \frac{m-n}{5m^{3}n} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Me whakarea te \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} ki te \frac{1}{10n^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
Whakareatia te 2 ki te 5, ka 10.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
Whakareatia te 10 ki te 10, ka 100.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Whakaarohia te \left(m+n\right)\left(m-n\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}