Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{m+n}{2}\left(\frac{30\left(m-n\right)}{m-n}+\frac{10}{m-n}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 30 ki te \frac{m-n}{m-n}.
\frac{m+n}{2}\times \frac{30\left(m-n\right)+10}{m-n}
Tā te mea he rite te tauraro o \frac{30\left(m-n\right)}{m-n} me \frac{10}{m-n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{m+n}{2}\times \frac{30m-30n+10}{m-n}
Mahia ngā whakarea i roto o 30\left(m-n\right)+10.
\frac{\left(m+n\right)\left(30m-30n+10\right)}{2\left(m-n\right)}
Me whakarea te \frac{m+n}{2} ki te \frac{30m-30n+10}{m-n} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{10\left(m+n\right)\left(3m-3n+1\right)}{2\left(m-n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{5\left(m+n\right)\left(3m-3n+1\right)}{m-n}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{15m^{2}+5m-15n^{2}+5n}{m-n}
Me whakaroha te kīanga.
\frac{m+n}{2}\left(\frac{30\left(m-n\right)}{m-n}+\frac{10}{m-n}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 30 ki te \frac{m-n}{m-n}.
\frac{m+n}{2}\times \frac{30\left(m-n\right)+10}{m-n}
Tā te mea he rite te tauraro o \frac{30\left(m-n\right)}{m-n} me \frac{10}{m-n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{m+n}{2}\times \frac{30m-30n+10}{m-n}
Mahia ngā whakarea i roto o 30\left(m-n\right)+10.
\frac{\left(m+n\right)\left(30m-30n+10\right)}{2\left(m-n\right)}
Me whakarea te \frac{m+n}{2} ki te \frac{30m-30n+10}{m-n} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{10\left(m+n\right)\left(3m-3n+1\right)}{2\left(m-n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{5\left(m+n\right)\left(3m-3n+1\right)}{m-n}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{15m^{2}+5m-15n^{2}+5n}{m-n}
Me whakaroha te kīanga.