Aromātai
\frac{5\left(m+n\right)\left(3m-3n+1\right)}{m-n}
Whakaroha
-\frac{5\left(-3m^{2}-m+3n^{2}-n\right)}{m-n}
Tohaina
Kua tāruatia ki te papatopenga
\frac{m+n}{2}\left(\frac{30\left(m-n\right)}{m-n}+\frac{10}{m-n}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 30 ki te \frac{m-n}{m-n}.
\frac{m+n}{2}\times \frac{30\left(m-n\right)+10}{m-n}
Tā te mea he rite te tauraro o \frac{30\left(m-n\right)}{m-n} me \frac{10}{m-n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{m+n}{2}\times \frac{30m-30n+10}{m-n}
Mahia ngā whakarea i roto o 30\left(m-n\right)+10.
\frac{\left(m+n\right)\left(30m-30n+10\right)}{2\left(m-n\right)}
Me whakarea te \frac{m+n}{2} ki te \frac{30m-30n+10}{m-n} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{10\left(m+n\right)\left(3m-3n+1\right)}{2\left(m-n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{5\left(m+n\right)\left(3m-3n+1\right)}{m-n}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{15m^{2}+5m-15n^{2}+5n}{m-n}
Me whakaroha te kīanga.
\frac{m+n}{2}\left(\frac{30\left(m-n\right)}{m-n}+\frac{10}{m-n}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 30 ki te \frac{m-n}{m-n}.
\frac{m+n}{2}\times \frac{30\left(m-n\right)+10}{m-n}
Tā te mea he rite te tauraro o \frac{30\left(m-n\right)}{m-n} me \frac{10}{m-n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{m+n}{2}\times \frac{30m-30n+10}{m-n}
Mahia ngā whakarea i roto o 30\left(m-n\right)+10.
\frac{\left(m+n\right)\left(30m-30n+10\right)}{2\left(m-n\right)}
Me whakarea te \frac{m+n}{2} ki te \frac{30m-30n+10}{m-n} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{10\left(m+n\right)\left(3m-3n+1\right)}{2\left(m-n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{5\left(m+n\right)\left(3m-3n+1\right)}{m-n}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{15m^{2}+5m-15n^{2}+5n}{m-n}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}