Tīpoka ki ngā ihirangi matua
Whakaoti mō l
Tick mark Image
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{r}l=e\cos(\theta )+1
He hanga arowhānui tō te whārite.
\frac{\frac{1}{r}lr}{1}=\frac{\left(e\cos(\theta )+1\right)r}{1}
Whakawehea ngā taha e rua ki te r^{-1}.
l=\frac{\left(e\cos(\theta )+1\right)r}{1}
Mā te whakawehe ki te r^{-1} ka wetekia te whakareanga ki te r^{-1}.
l=r\left(e\cos(\theta )+1\right)
Whakawehe 1+e\cos(\theta ) ki te r^{-1}.
l=r+e\cos(\theta )r
Tē taea kia ōrite te tāupe r ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te r.
r+e\cos(\theta )r=l
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(1+e\cos(\theta )\right)r=l
Pahekotia ngā kīanga tau katoa e whai ana i te r.
\left(e\cos(\theta )+1\right)r=l
He hanga arowhānui tō te whārite.
\frac{\left(e\cos(\theta )+1\right)r}{e\cos(\theta )+1}=\frac{l}{e\cos(\theta )+1}
Whakawehea ngā taha e rua ki te 1+e\cos(\theta ).
r=\frac{l}{e\cos(\theta )+1}
Mā te whakawehe ki te 1+e\cos(\theta ) ka wetekia te whakareanga ki te 1+e\cos(\theta ).
r=\frac{l}{e\cos(\theta )+1}\text{, }r\neq 0
Tē taea kia ōrite te tāupe r ki 0.