Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{k^{-27}}{k^{6}k^{0}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -36 me te 9 kia riro ai te -27.
\frac{k^{-27}}{k^{6}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 0 kia riro ai te 6.
\frac{1}{k^{33}}
Tuhia anō te k^{6} hei k^{-27}k^{33}. Me whakakore tahi te k^{-27} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{k^{-27}}{k^{6}k^{0}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -36 me te 9 kia riro ai te -27.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{k^{-27}}{k^{6}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 0 kia riro ai te 6.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{k^{33}})
Tuhia anō te k^{6} hei k^{-27}k^{33}. Me whakakore tahi te k^{-27} i te taurunga me te tauraro.
-\left(k^{33}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}k}(k^{33})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(k^{33}\right)^{-2}\times 33k^{33-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-33k^{32}\left(k^{33}\right)^{-2}
Whakarūnātia.