Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(9k+5\right)\left(k+6\right)=\left(9k+10\right)\left(k+5\right)
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -\frac{10}{9},-\frac{5}{9} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(9k+5\right)\left(9k+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o 9k+10,9k+5.
9k^{2}+59k+30=\left(9k+10\right)\left(k+5\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 9k+5 ki te k+6 ka whakakotahi i ngā kupu rite.
9k^{2}+59k+30=9k^{2}+55k+50
Whakamahia te āhuatanga tuaritanga hei whakarea te 9k+10 ki te k+5 ka whakakotahi i ngā kupu rite.
9k^{2}+59k+30-9k^{2}=55k+50
Tangohia te 9k^{2} mai i ngā taha e rua.
59k+30=55k+50
Pahekotia te 9k^{2} me -9k^{2}, ka 0.
59k+30-55k=50
Tangohia te 55k mai i ngā taha e rua.
4k+30=50
Pahekotia te 59k me -55k, ka 4k.
4k=50-30
Tangohia te 30 mai i ngā taha e rua.
4k=20
Tangohia te 30 i te 50, ka 20.
k=\frac{20}{4}
Whakawehea ngā taha e rua ki te 4.
k=5
Whakawehea te 20 ki te 4, kia riro ko 5.