Whakaoti mō k
k=5
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { k + 6 } { 9 k + 10 } = \frac { k + 5 } { 9 k + 5 }
Tohaina
Kua tāruatia ki te papatopenga
\left(9k+5\right)\left(k+6\right)=\left(9k+10\right)\left(k+5\right)
Tē taea kia ōrite te tāupe k ki tētahi o ngā uara -\frac{10}{9},-\frac{5}{9} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(9k+5\right)\left(9k+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o 9k+10,9k+5.
9k^{2}+59k+30=\left(9k+10\right)\left(k+5\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 9k+5 ki te k+6 ka whakakotahi i ngā kupu rite.
9k^{2}+59k+30=9k^{2}+55k+50
Whakamahia te āhuatanga tuaritanga hei whakarea te 9k+10 ki te k+5 ka whakakotahi i ngā kupu rite.
9k^{2}+59k+30-9k^{2}=55k+50
Tangohia te 9k^{2} mai i ngā taha e rua.
59k+30=55k+50
Pahekotia te 9k^{2} me -9k^{2}, ka 0.
59k+30-55k=50
Tangohia te 55k mai i ngā taha e rua.
4k+30=50
Pahekotia te 59k me -55k, ka 4k.
4k=50-30
Tangohia te 30 mai i ngā taha e rua.
4k=20
Tangohia te 30 i te 50, ka 20.
k=\frac{20}{4}
Whakawehea ngā taha e rua ki te 4.
k=5
Whakawehea te 20 ki te 4, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}