Whakaoti mō j
j=-1
Tohaina
Kua tāruatia ki te papatopenga
\left(j+3\right)\left(j-8\right)=\left(j+10\right)\left(j-1\right)
Tē taea kia ōrite te tāupe j ki tētahi o ngā uara -10,-3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(j+3\right)\left(j+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o j+10,j+3.
j^{2}-5j-24=\left(j+10\right)\left(j-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te j+3 ki te j-8 ka whakakotahi i ngā kupu rite.
j^{2}-5j-24=j^{2}+9j-10
Whakamahia te āhuatanga tuaritanga hei whakarea te j+10 ki te j-1 ka whakakotahi i ngā kupu rite.
j^{2}-5j-24-j^{2}=9j-10
Tangohia te j^{2} mai i ngā taha e rua.
-5j-24=9j-10
Pahekotia te j^{2} me -j^{2}, ka 0.
-5j-24-9j=-10
Tangohia te 9j mai i ngā taha e rua.
-14j-24=-10
Pahekotia te -5j me -9j, ka -14j.
-14j=-10+24
Me tāpiri te 24 ki ngā taha e rua.
-14j=14
Tāpirihia te -10 ki te 24, ka 14.
j=\frac{14}{-14}
Whakawehea ngā taha e rua ki te -14.
j=-1
Whakawehea te 14 ki te -14, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}