Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{i\left(3+4i\right)}{3^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{i\left(3+4i\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{3i+4i^{2}}{25}
Whakareatia i ki te 3+4i.
\frac{3i+4\left(-1\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-4+3i}{25}
Mahia ngā whakarea i roto o 3i+4\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
-\frac{4}{25}+\frac{3}{25}i
Whakawehea te -4+3i ki te 25, kia riro ko -\frac{4}{25}+\frac{3}{25}i.
Re(\frac{i\left(3+4i\right)}{3^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{i\left(3+4i\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{3i+4i^{2}}{25})
Whakareatia i ki te 3+4i.
Re(\frac{3i+4\left(-1\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-4+3i}{25})
Mahia ngā whakarea i roto o 3i+4\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(-\frac{4}{25}+\frac{3}{25}i)
Whakawehea te -4+3i ki te 25, kia riro ko -\frac{4}{25}+\frac{3}{25}i.
-\frac{4}{25}
Ko te wāhi tūturu o -\frac{4}{25}+\frac{3}{25}i ko -\frac{4}{25}.