Aromātai
\frac{824}{169}+\frac{389}{169}i\approx 4.875739645+2.301775148i
Wāhi Tūturu
\frac{824}{169} = 4\frac{148}{169} = 4.875739644970414
Tohaina
Kua tāruatia ki te papatopenga
\frac{i\left(-47-52i\right)}{\left(3-2i\right)^{2}}
Tātaihia te 1+4i mā te pū o 3, kia riro ko -47-52i.
\frac{52-47i}{\left(3-2i\right)^{2}}
Whakareatia te i ki te -47-52i, ka 52-47i.
\frac{52-47i}{5-12i}
Tātaihia te 3-2i mā te pū o 2, kia riro ko 5-12i.
\frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 5+12i.
\frac{824+389i}{169}
Mahia ngā whakarea i roto o \frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}.
\frac{824}{169}+\frac{389}{169}i
Whakawehea te 824+389i ki te 169, kia riro ko \frac{824}{169}+\frac{389}{169}i.
Re(\frac{i\left(-47-52i\right)}{\left(3-2i\right)^{2}})
Tātaihia te 1+4i mā te pū o 3, kia riro ko -47-52i.
Re(\frac{52-47i}{\left(3-2i\right)^{2}})
Whakareatia te i ki te -47-52i, ka 52-47i.
Re(\frac{52-47i}{5-12i})
Tātaihia te 3-2i mā te pū o 2, kia riro ko 5-12i.
Re(\frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)})
Me whakarea te taurunga me te tauraro o \frac{52-47i}{5-12i} ki te haumi hiato o te tauraro, 5+12i.
Re(\frac{824+389i}{169})
Mahia ngā whakarea i roto o \frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}.
Re(\frac{824}{169}+\frac{389}{169}i)
Whakawehea te 824+389i ki te 169, kia riro ko \frac{824}{169}+\frac{389}{169}i.
\frac{824}{169}
Ko te wāhi tūturu o \frac{824}{169}+\frac{389}{169}i ko \frac{824}{169}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}