Aromātai
5
Wāhi Tūturu
5
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
\frac { i \sqrt { 5 } } { i \sqrt { \frac { 1 } { 5 } } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{5}}{\sqrt{\frac{1}{5}}i^{0}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}i^{0}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{5}}.
\frac{\sqrt{5}}{\frac{1}{\sqrt{5}}i^{0}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}i^{0}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}i^{0}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}\times 1}
Tātaihia te i mā te pū o 0, kia riro ko 1.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}}
Tuhia te \frac{\sqrt{5}}{5}\times 1 hei hautanga kotahi.
\frac{\sqrt{5}\times 5}{\sqrt{5}}
Whakawehe \sqrt{5} ki te \frac{\sqrt{5}}{5} mā te whakarea \sqrt{5} ki te tau huripoki o \frac{\sqrt{5}}{5}.
\frac{\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}\times 5}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{5}\times 5\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{5\times 5}{5}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
\frac{25}{5}
Whakareatia te 5 ki te 5, ka 25.
5
Whakawehea te 25 ki te 5, kia riro ko 5.
Re(\frac{\sqrt{5}}{\sqrt{\frac{1}{5}}i^{0}})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
Re(\frac{\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}i^{0}})
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{5}}.
Re(\frac{\sqrt{5}}{\frac{1}{\sqrt{5}}i^{0}})
Tātaitia te pūtakerua o 1 kia tae ki 1.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}i^{0}})
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}i^{0}})
Ko te pūrua o \sqrt{5} ko 5.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}\times 1})
Tātaihia te i mā te pū o 0, kia riro ko 1.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}})
Tuhia te \frac{\sqrt{5}}{5}\times 1 hei hautanga kotahi.
Re(\frac{\sqrt{5}\times 5}{\sqrt{5}})
Whakawehe \sqrt{5} ki te \frac{\sqrt{5}}{5} mā te whakarea \sqrt{5} ki te tau huripoki o \frac{\sqrt{5}}{5}.
Re(\frac{\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}})
Whakangāwaritia te tauraro o \frac{\sqrt{5}\times 5}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
Re(\frac{\sqrt{5}\times 5\sqrt{5}}{5})
Ko te pūrua o \sqrt{5} ko 5.
Re(\frac{5\times 5}{5})
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
Re(\frac{25}{5})
Whakareatia te 5 ki te 5, ka 25.
Re(5)
Whakawehea te 25 ki te 5, kia riro ko 5.
5
Ko te wāhi tūturu o 5 ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}