Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{\left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{i\sqrt{2}-5}{i+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te i-\sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{i^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-1-2}
Pūrua i. Pūrua \sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-3}
Tangohia te 2 i te -1, ka -3.
\frac{-\sqrt{2}-i\left(\sqrt{2}\right)^{2}-5i+5\sqrt{2}}{-3}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o i\sqrt{2}-5 ki ia tau o i-\sqrt{2}.
\frac{-\sqrt{2}-i\times 2-5i+5\sqrt{2}}{-3}
Ko te pūrua o \sqrt{2} ko 2.
\frac{-\sqrt{2}-2i-5i+5\sqrt{2}}{-3}
Whakareatia te -i ki te 2, ka -2i.
\frac{-\sqrt{2}-7i+5\sqrt{2}}{-3}
Tangohia te 5i i te -2i, ka -7i.
\frac{4\sqrt{2}-7i}{-3}
Pahekotia te -\sqrt{2} me 5\sqrt{2}, ka 4\sqrt{2}.
\frac{-4\sqrt{2}+7i}{3}
Me whakarea tahi te taurunga me te tauraro ki te -1.