Aromātai
-\frac{5g}{34}
Kimi Pārōnaki e ai ki g
-\frac{5}{34} = -0.14705882352941177
Tohaina
Kua tāruatia ki te papatopenga
\frac{g\left(-\frac{5}{3}\right)}{3-\frac{5\left(-5\right)}{3}}
Tuhia te 5\left(-\frac{5}{3}\right) hei hautanga kotahi.
\frac{g\left(-\frac{5}{3}\right)}{3-\frac{-25}{3}}
Whakareatia te 5 ki te -5, ka -25.
\frac{g\left(-\frac{5}{3}\right)}{3-\left(-\frac{25}{3}\right)}
Ka taea te hautanga \frac{-25}{3} te tuhi anō ko -\frac{25}{3} mā te tango i te tohu tōraro.
\frac{g\left(-\frac{5}{3}\right)}{3+\frac{25}{3}}
Ko te tauaro o -\frac{25}{3} ko \frac{25}{3}.
\frac{g\left(-\frac{5}{3}\right)}{\frac{9}{3}+\frac{25}{3}}
Me tahuri te 3 ki te hautau \frac{9}{3}.
\frac{g\left(-\frac{5}{3}\right)}{\frac{9+25}{3}}
Tā te mea he rite te tauraro o \frac{9}{3} me \frac{25}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{g\left(-\frac{5}{3}\right)}{\frac{34}{3}}
Tāpirihia te 9 ki te 25, ka 34.
\frac{g\left(-\frac{5}{3}\right)\times 3}{34}
Whakawehe g\left(-\frac{5}{3}\right) ki te \frac{34}{3} mā te whakarea g\left(-\frac{5}{3}\right) ki te tau huripoki o \frac{34}{3}.
\frac{g\left(-5\right)}{34}
Me whakakore te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}