Whakaoti mō f
f=2x+h
h\neq 0
Whakaoti mō h
h=f-2x
f\neq 2x
Graph
Tohaina
Kua tāruatia ki te papatopenga
f\left(x+h\right)-fx=2xh+hh
Whakareatia ngā taha e rua o te whārite ki te h.
f\left(x+h\right)-fx=2xh+h^{2}
Whakareatia te h ki te h, ka h^{2}.
fx+fh-fx=2xh+h^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x+h.
fh=2xh+h^{2}
Pahekotia te fx me -fx, ka 0.
hf=2hx+h^{2}
He hanga arowhānui tō te whārite.
\frac{hf}{h}=\frac{h\left(2x+h\right)}{h}
Whakawehea ngā taha e rua ki te h.
f=\frac{h\left(2x+h\right)}{h}
Mā te whakawehe ki te h ka wetekia te whakareanga ki te h.
f=2x+h
Whakawehe h\left(2x+h\right) ki te h.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}