Whakaoti mō f, g
f=10
g=30
Tohaina
Kua tāruatia ki te papatopenga
3f=g
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 33, arā, te tauraro pātahi he tino iti rawa te kitea o 11,33.
f=\frac{1}{3}g
Whakawehea ngā taha e rua ki te 3.
\frac{1}{3}g+g=40
Whakakapia te \frac{g}{3} mō te f ki tērā atu whārite, f+g=40.
\frac{4}{3}g=40
Tāpiri \frac{g}{3} ki te g.
g=30
Whakawehea ngā taha e rua o te whārite ki te \frac{4}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
f=\frac{1}{3}\times 30
Whakaurua te 30 mō g ki f=\frac{1}{3}g. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō f hāngai tonu.
f=10
Whakareatia \frac{1}{3} ki te 30.
f=10,g=30
Kua oti te pūnaha te whakatau.
3f=g
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 33, arā, te tauraro pātahi he tino iti rawa te kitea o 11,33.
3f-g=0
Tangohia te g mai i ngā taha e rua.
3f-g=0,f+g=40
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\1&1\end{matrix}\right)\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}0\\40\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&1\end{matrix}\right)\left(\begin{matrix}f\\g\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\40\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}f\\g\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\40\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}f\\g\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\40\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-1\right)}&-\frac{-1}{3-\left(-1\right)}\\-\frac{1}{3-\left(-1\right)}&\frac{3}{3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\40\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}0\\40\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 40\\\frac{3}{4}\times 40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}10\\30\end{matrix}\right)
Mahia ngā tātaitanga.
f=10,g=30
Tangohia ngā huānga poukapa f me g.
3f=g
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 33, arā, te tauraro pātahi he tino iti rawa te kitea o 11,33.
3f-g=0
Tangohia te g mai i ngā taha e rua.
3f-g=0,f+g=40
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3f-g=0,3f+3g=3\times 40
Kia ōrite ai a 3f me f, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3f-g=0,3f+3g=120
Whakarūnātia.
3f-3f-g-3g=-120
Me tango 3f+3g=120 mai i 3f-g=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-g-3g=-120
Tāpiri 3f ki te -3f. Ka whakakore atu ngā kupu 3f me -3f, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4g=-120
Tāpiri -g ki te -3g.
g=30
Whakawehea ngā taha e rua ki te -4.
f+30=40
Whakaurua te 30 mō g ki f+g=40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō f hāngai tonu.
f=10
Me tango 30 mai i ngā taha e rua o te whārite.
f=10,g=30
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}